J Fuel Chem Technol
J Fuel Chem Technol  2013, Vol. 41 Issue (05): 589-600    DOI:
Research articles Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading
SHI Gang1, LIN Xiu-ying1,2, FAN Yu2, BAO Xiao-jun1
1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum(Beijing), Beijing 102249, China;
2. The Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum(Beijing), Beijing 102249, China
 Download: PDF (4487 KB)   HTML (1 KB)  Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The effects of the sequence of the combined steaming and alkali treatments of ZSM-5 zeolite on its acidic properties and pore structure were investigated and compared with those of individual steaming treatment or alkali treatment. The results showed that the alkali treatment after steaming has triple effects on the resultant ZSM-5 zeolite, i.e. desilication, realumination and removal of extra-framework aluminum; whereas the steaming after alkali treatment has binary effects, i.e. dealumination and stabilization. Compared with the alkali treatment after steaming, the steaming after alkali treatment is more effective in adjusting the zeolite acidic properties and creating mesopores. The catalyst derived from ZSM-5 zeolite modified via the combined alkali treatment and steaming exhibits moderate isomerization activity, higher aromatization activity and superior stability in the hydro-upgrading of fluid catalytic cracking gasoline.
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
SHI Gang
LIN Xiu-ying
BAO Xiao-jun
Key wordsZSM-5   framework desilication   framework dealumination   fluid catalytic cracking gasoline   hydro-upgrading     
Received: 2013-01-10;
Cite this article:   
SHI Gang,LIN Xiu-ying,FAN Yu et al. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading[J]. J Fuel Chem Technol, 2013, 41(05): 589-600.
http://rlhxxb.sxicc.ac.cn/EN/     or     http://rlhxxb.sxicc.ac.cn/EN/Y2013/V41/I05/589
[1] KOKO TAILO G T, LAWTON S L, OLSON D H, MEIER W M. Structure of synthetic zeolite ZSM-5[J]. Nature, 1978, 272: 437-438.
[2] BIEMMI E, BEIN T. Assembly of nanozeolite monolayers on the gold substrates of piezoelectric sensors[J]. Langmuir, 2008, 24(19): 11196-11202.
[3] TAN P L, LEUNG Y L, LAI S Y, AU C T. The effect of calcination temperature on the catalytic performance of 2 wt.% Mo/HZSM-5 in methane aromatization[J]. Appl Catal A, 2002, 228(1-2): 115-125.
[4] NAYAK V S, CHOUDHARY V R. Selective poisoning of stronger acid sites on HZSM-5 in the conversion of alcohols and olefins to aromatics[J]. Appl Catal, 1984, 9: 251-261.
[5] CHAL R, GRARDIN C, BULUT M, VAN DONK S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J]. Chem Cat Chem, 2011, 3(1): 67-81.
[6] SASAKI Y, SUZUKI T, TAKAMURA T, SAJI A, SAKA H. Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera[J]. J Catal, 1998, 178(1): 94-100.
[7] JANSSEN A H, KOSTER A J, de JONG K P. On the shape of the mesopores in zeolite Y: A three-dimensional transmission electron microscopy study combined with texture analysis[J]. J Phys Chem B, 2002, 106(46): 11905-11909.
[8] MOHAMED M M, SALAMA T M. Effect of mordenite dealumination on the structure of encapsulated molybdenum catalysts[J]. J Colloid Interface Sci, 2002, 249(1): 104-112.
[9] VAN DONK S, JANSSEN A H, BITTER J H, DE JONG K P. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003, 45(2): 297-319.
[10] DESSAU R M, VALYOCSIK E W, GOEKE N H. Aluminum zoning in ZSM-5 as revealed by selective silica removal[J]. Zeolites, 1992, 12(7): 776-779.
[11] LIETZ G, SCHNABEL K H, PEUKER C, GROSS T, STOREK W, VÖLTER J. Modifications of H-ZSM-5 catalysts by NaOH treatment[J]. J Catal, 1994, 148(2): 562-568.
[12] OGURA M, SHINOMIYA S, TATENO J, NARA Y, KIKUCHI E, MATSUKATA M. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution[J]. Chem Lett, 2000, 29(8): 882-883.
[13] OGURA M, SHINOMIYA S, TATENO J, NARA Y, NOMURA M, KIKUCHI E, MATSUKATA M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A, 2001, 219(1-2): 33-43.
[14] SUZUKI T, OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microporous Mesoporous Mater, 2001, 43(1): 83-89.
[15] GROEN J G, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids Surf A, 2004, 241(1-3): 53-58.
[16] I?MEK A, SUBOTIC B, AIELLO R, CREA F, NASTRO A, TUOTO C. Dissolution of high-silica zeolites in alkaline solutions I. Dissolution of silicalite-1 and ZSM-5 with different aluminum content[J]. Microporous Mater, 1995, 4(2-3): 159-168.
[17] I?MEK A, SUBOTIC B, AIELLO R, CREA F, NASTRO A, TUOTO C. Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of 'activated' silicalite-1 and ZSM-5 with different aluminum content[J]. Microporous Mater, 1997, 8(3-4): 159-169.
[18] DOREMIEUX-MORIN C, RAMSARAN A, LE VAN MAO R, BATAMACK P, HEERIBOUT L, SEMMER V, DENES G, FRAISSARD J. 1H broad-line and MAS NMR: Application to the study of acid sites of desilicated zeolite ZSM-5[J]. Catal Lett, 1995, 34(1-2): 139-149.
[19] ZHANG W, BAO X, GUO X, WANG X. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite[J]. Catal Lett, 1999, 60(1-2): 89-94.
[20] ZHANG W, HAN X, LIU X, BAO X. The stability of nanosized HZSM-5 zeolite: A high-resolution solid-state NMR study[J]. Microporous Mesoporous Mater, 2001, 50(1): 13-23.
[21] AXON S A, KLINOWSKI J. Synthesis and characterization of defect-free crystals of MFI-type zeolites[J]. Appl Catal A, 1992, 81(1): 27-34.
[22] ZHANG W, MA D, HAN X, LIU X, BAO X, GUO X, WANG X. Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen: A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes[J]. J Catal, 1999, 188(2): 393-402.
[23] LE VAN MAO R, LE S T, Ohayon D, CALILLIBOT F, GELEBART L, DENSE G. Modification of the micropore characteristics of the desilicated ZSM-5 zeolite by thermal treatment[J]. Zeolites, 1997, 19(4): 270-278.
[24] LOEWENSTEIN W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. Am Mineral, 1953, 39: 92-96.
[25] GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium[J]. Microporous Mesoporous Mater, 2004, 69(1-2): 29-34.
[26] GROEN J C, BACH T, ZIESE U, Donk A M P, de JONG K P, MOULIJN J A, PREZ-RAMREZ J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J]. J Am Chem Soc, 2005, 127(31): 10792-10793.
[27] XIAO F S, WANG L, YIN C, LIN K, DI Y, LI J, XU R, SU D S, SCHIOGL R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew Chem Int Ed, 2006, 45(19), 3090-3093.
[28] MELIN-CABRERA I, ESPINOSA S, MENTRUIT C, KAPTEIJN F, MOULIJN J A. Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts[J]. Catal Commun, 2006, 7(2): 100-103.
[29] MELIN-CABRERA I, ESPINOSA S, GROEN J C, VAN DEN LINDEN B, KAPTEIJN F, MOULIJN J A. Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition[J]. J Catal, 2006, 238(2): 250-259.
[30] YANG C, XU Q. States of aluminum in zeolite β and influence of acidic or basic medium[J]. Zeolites, 1997, 19(5-6): 404-410.
[31] SCHERZER J, BASS J L, HUNTER F D. Structural characterization of hydrothermally treated lanthanum Y zeolites. I. Framework vibrational spectra and crystal structure[J]. J Phys Chem, 1975, 79(12): 1194-1199.
[32] LE VAN MAO R, XIAO S, RAMSARAN A, YAO J. Selective removal of silicon from zeolite frameworks using sodium carbonate[J]. J Mater Chem, 1994, 4: 605-610.
[33] GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous Mesoporous Mater, 2005, 87(2): 153-161.
[34] GROEN J C, JANSEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J Phys Chem B, 2004, 108(35): 13062-13065.
[35] GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent[J]. Chem Eur J, 2005, 11(7): 4983-4994.
[36] 王辉, 张汉军, 孔德金, 陈庆龄, 高滋. ZSM-5催化剂水蒸气处理对甲苯选择性歧化性能的影响[J]. 石油化工, 2000, 29(6): 401-404. (WANG Hui, ZHANG Han-jun, KONG De-jin, CHEN Qing-ling, GAO Zi. Effects of hydrothermal treatment on selective toluene disproportionation[J]. Petrochemical Technology, 2000, 29(6): 401-404.)
[37] 吕仁庆, 王秋英, 项寿鹤. 碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响[J]. 催化学报, 2002, 23(5): 421-424. (LU Ren-qing, WANG Qiu-ying, XIANG Shou-he. Investigation of acid properties and structure of ZSM-5 zeolite treated with alkaline steaming[J]. Chinese Journal Catalysis, 2002, 23(5): 421-424.)
[1] DONG Shi-wei, QIN Yu-cai, RUAN Yan-jun, WANG Yuan, YU Wen-guang, ZHANG Lei, FAN Yue-chao, SONG Li-juan. Performance of adsorptive desulfurization for FCC gasoline over modified Y zeolites[J]. J Fuel Chem Technol, 2013, 41(03): 341-346.
[2] MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. J Fuel Chem Technol, 2012, 40(10): 1230-1239.
[3] JI Yuan-yuan, MAN Yi, WANG Huan-ru, YANG Ji. Influence of adhesive on the performance of extruded ZSM-5 catalysts in naphtha cracking[J]. J Fuel Chem Technol, 2012, 40(06): 727-731.
[4] SHENG Qing-tao, LING Kai-cheng, LI Zhen-rong, ZHAO Liang-fu. Effect of heat treatment on the structure, acidity and catalytic performance of HZSM-5 zeolites in ethanol dehydration[J]. J Fuel Chem Technol, 2012, (04): 494-500.
[5] MAO Dong-sen, XIA Jian-chao. Effects of silicon to aluminum ratio and crystal size of zeolite on catalytic properties of Cu-ZnO-Al2O3/HZSM-5 for the direct synthesis of dimethyl ether from syngas[J]. J Fuel Chem Technol, 2012, 40(02): 235-240.
[6] LI  Ning, LU Cui-Yun, XU Dong-Sheng, HU  Yi, HAN Yu-Wang. Effects of F/Nb mol ratio of F-Nb/HZSM-5 catalyst on the catalytic performance for ethanol dehydration to ethylene[J]. J Fuel Chem Technol, 2011, 39(11): 850-855.
[7] JI Yuan-Yuan, Wang-Huan-Ru, Man- Yi, Zuo- Min. Factors influencing the stability of ZSM-5-based catalyst[J]. J Fuel Chem Technol, 2011, 39(07): 533-537.
[8] YANG Peng-Fei, Zhou-Ji-Cheng, Ren-Wen-Ming. Catalytic decomposition of nitrogen oxide over Cu/HZSM-5 catalysts prepared by different methods[J]. J Fuel Chem Technol, 2011, 39(02): 122-127.
[9] ZHANG Su-Gong, Zhang-Bian-Ling, Gao-Zhi-Xian, Han-Yi-Zhuo. Effect of zeolite crystal size on the catalytic performance of HZSM-5 in the reaction of methanol to light olefins[J]. J Fuel Chem Technol, 2010, 38(04): 483-489.
[10] LV Yong-Xin, WU Chuang-Zhi, WANG Tie-Jun, MA Long-Long, XIONG zu-Hong, ZHOU Yi. Effects of MgO modification to HZSM-5 Zeolite for LPG synthesis[J]. J Fuel Chem Technol, 2010, 38(03): 313-318.
[11] LI Jian, Tan-Ji-Sheng, YANG Cai-Gong, Han-Yi-Zhuo. Effect of water on stability of |HZSM-5 and product distribution in two-stage gasoline synthesis from syngas[J]. J Fuel Chem Technol, 2010, 38(01): 96-101.
[12] WANG Gang, Tun-Yong-Chao, Xu-Chun-Meng, Liu-Wei-Kang, GAO Jin-Sen. Catalytic pyrolysis of fluid catalytic cracking gasoline for the production of light olefins[J]. J Fuel Chem Technol, 2009, 37(05): 552-559.
[13] ZHANG Zhenli,ZHOU Yasong,ZONG Haisheng,LI Changxi,XU Chunming. 镁铝复合氧化物载体的制备与性质研究[J]. J Fuel Chem Technol, 2007, 35(01): 91-97.
[14] YE Tian-xu,ZHANG Yu-hui,LIU Jin-he,LI Yu-zhen. 离子液体降低FCC汽油烯烃体积分数的研究[J]. J Fuel Chem Technol, 2005, 33(02): 175-178.
[15] LUO Li-wen,LÜ Ren-qing. 水蒸气处理对HZSM-5分子筛催化剂的酸性及孔结构的影响[J]. J Fuel Chem Technol, 2004, 32(05): 606-610.
J Fuel Chem Technol
Copyright © Journal of Fuel Chemistry and Technology
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn