Volume 41 Issue 08
Aug.  2013
Turn off MathJax
Article Contents
WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 897-910.
Citation: WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 897-910.

A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves

  • Received Date: 2013-06-11
  • Rev Recd Date: 2013-06-30
  • Publish Date: 2013-08-30
  • This review introduces the recent progresses made in the study of direct reaction and hydrocarbon-pool mechanisms for the C-C bond formation in the conversion of methanol over acid molecular sieves. It also involves in the main theoretical and experimental methods. The dehydration mechanism of methanol and the problems of direct reaction and hydrocarbon-pool mechanisms are also analysed. In addition, the effect of molecular sieve pore structures on the hydrocarbon-pool species and their reaction mechanism was evaluated.
  • loading
  • 乔治A 奥拉, 阿兰 戈佩特, G K 苏耶 普拉卡西. 跨越油气时代: 甲醇经济[M]. 北京: 化学工业出版社, 2007. (OLAH G A, GOEPPERT A, PRAKASH G K S. Beyond oil and gas: The methanol economy[M]. Beijing: Chemical Industry Press, 2007.)
    HEMELSOET K, VAN DER MYNSBRUGGE J, DE WISPELAERE K, WAROQUIER M, VAN SPEYBROECK, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545.
    STÖCKER M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Micropor Mesopor Mat, 1999, 29(1/2): 3-48.
    DAHL I M, KOLBOE S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catal Lett, 1993, 20(3): 329-336.
    MCCANN D M, LESTHAEGHE D, KLETNIEKS P W, GUENTHER D R, HAYMAN M J, VAN SPEYBROECK V, WAROQUIER M, HAW J F. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment[J]. Angew Chem Int Edit, 2008, 47(28): 5179-5182.
    HAW J F, SONG W G, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts Chem Res, 2003, 36(5): 317-326.
    OLSBYE U, BJRGEN M, SVELLE S, LILLERUD K P, KOLBOE S. Mechanistic insight into the methanol-to-hydrocarbons reaction[J]. Catal Today, 2005, 106(1): 108-111.
    BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.
    WANG W, HUNGER M. Reactivity of surface alkoxy species on acidic zeolite catalysts[J]. Accounts Chem Res, 2008, 41(8): 895-904.
    李春义, 沈师孔. 稳态同位素瞬变动力学分析[J]. 化学进展, 1999, 11(1): 49-59. (LI Chun-yi, SHEN Shi-kong. Steady state isotopic transient kinetic analysis[J]. Progress in Chemistry, 1999, 11(1): 49-59.)
    罗久里. 脉冲式微型催化反应器(III)[J]. 石油炼制与化工, 1980, 6: 51-54. (LUO Jiu-li. Pulse-feed catalytic microreactors(III)[J]. Petroleum Processing and Petrochemicals, 1980, 6: 51-54.)
    许建华, 陈清林, 纪红兵. 原位漫反射红外光谱技术用于气固催化反应机理的研究[J]. 化学进展, 2008, 20(6): 811-820. (XU Jian-hua, CHEN Qing-lin, JI Hong-bing. Application of in situ DRIFTS in the investigation of reaction mechanisms for gas solid catalytic reactions [J]. Progress in Chemistry, 2008, 20(6): 811-820.)
    辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009. (XIN Qin, LUO Meng-fei. Modern catalytic research methods[M]. Beijing: Science Publishing Company, 2009.)
    HUNGER M, WEITKAMP J. In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis[J]. Angew Chem Int Edit, 2001, 40(16): 2954-2971.
    HUNGER M, HORVATH T. A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions[J]. J Chem Soc Chem Comm, 1995, (14): 1423-1424.
    EYRING H. The activated complex in chemical reactions[J]. J Chem Phys, 1935, 3(2): 107-115.
    LAIDLER K J, KING M C. Development of transition-state theory[J]. J Phys Chem, 1983, 87(15): 2657-2664.
    TRUHLAR D G, GARRETT B C, KLIPPENSTEIN S J. Current status of transition-state theory[J]. J Phys Chem, 1996, 100(31): 12771-12800.
    BROADBELT L J, SNURR R Q. Applications of molecular modeling in heterogeneous catalysis research[J]. Appl Catal A: Gen, 2000, 200(1): 23-46.
    张跃, 谷景华, 尚家香, 马岳. 计算材料学基础[M]. 北京: 航空航天大学出版社, 2007. (ZHANG Yue, GU Jing-hua, SHANG Jia-xiang, MA Yue. Computational materials science[M]. Beijing: Beihang University Press, 2007.)
    CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Phys Rev Lett, 1985, 55(22): 2471-2474.
    MARX D, HUTTER J. Ab initio molecular dynamics: Basic theory and advanced methods[M]. New York: Cambridge University Press, 2009.
    SALVADOR P, KLADNIG W. Surface reactivity of zeolites type HY and Na-Y with methanol[J]. J Chem Soc Faraday Trans 1, 1977, 73(0): 1153-1168.
    BLASZKOWSKI S, VAN SANTEN R. Density functional theory calculations of the activation of methanol by a Brønsted zeolitic proton[J]. J Phys Chem, 1995, 99(30): 11728-11738.
    SHAH R, PAYNE M, LEE M H, GALE J D. Understanding the catalytic behavior of zeolites: A first-principles study of the adsorption of methanol[J]. Science, 1996, 271(5254): 1395-1397.
    JEANVOINE Y, NGYN J G, KRESSE G, HAFNER J. On the nature of water interacting with Brønsted acidic sites. Ab initio molecular dynamics study of hydrated HSAPO-34 [J]. J Phys Chem B, 1998, 102(38): 7307-7310.
    TICH I, GALE J, TERAKURA K, PAYNE M C. Role of the zeolitic environment in catalytic activation of methanol [J]. J Am Chem Soc, 1999, 121(14): 3292-3302.
    FORESTER T R, WONG S T, HOWE R F. In situ Fourier transform I.R. observation of methylating species in ZSM-5[J]. J Chem Soc Chem Comm, 1986, (21): 1611-1613.
    FORESTER T, HOWE R. In situ FTIR studies of methanol and dimethyl ether in ZSM-5[J]. J Am Chem Soc, 1987, 109(17): 5076-5082.
    WANG W, SEILER M, HUNGER M. Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy[J]. J Phys Chem B, 2001, 105(50): 12553-12558.
    WANG W, BUCHHOLZ A, ARNOLD A, XU M C, HUNGER M. Effect of surface methoxy groups on the 27Al quadrupole parameters of framework aluminum atoms in calcined zeolite H-Y[J]. Chem Phys Lett, 2003, 370(1): 88-93.
    BLASZKOWSKI S R, VAN SANTEN R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons[J]. J Phys Chem B, 1997, 101(13): 2292-2305.
    WANG W, BUCHHOLZ A, SEILER M, HUNGER M. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts[J]. J Am Chem Soc, 2003, 125(49): 15260-15267.
    LESTHAEGHE D, VAN SPEYBROECK V, MARIN G B, WAROQUIER M. Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process[J]. Angew Chem Int Edit, 2006, 45: 1714-1719.
    MOSES P G, NORSKOV J K. Methanol to dimethyl ether (DME) over ZSM-22. A periodic density functional theory study[J]. ACS Catal, 2013, 3(4 ): 735-745.
    SWABB E A, GATES B C. Diffusion, reaction, and fouling in H-mordenite crystallites. The catalytic dehydration of methanol[J]. Ind Eng Chem Fundam, 1972, 11(4): 540-545.
    CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47(2): 249-259.
    BIBBY D M, CHANG C D, HOWE R F, YURCHAK S. Methane conversion[M]. Amsterdam: Elsevier, 1988.
    HUTCHINGS G J, WATSON G W, WILLOCK D J. Methanol conversion to hydrocarbons over zeolite catalysts: Comments on the reaction mechanism for the formation of the first carbon-carbon bond[J]. Micropor Mesopor Mat, 1999, 29(1): 67-77.
    ONO Y, MORI T. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J]. J Chem Soc Faraday Trans 1, 1981, 77(9): 2209-2221.
    OLAH G A, DOGGWEILER H, FELBERG J D, FROHLICH S, GRDINA M J, KARPELES R, KEUMI T, INABA S, IP W M, LAMMERTSMA K. Onium Ylide chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1 C2 conversion[J]. J Am Chem Soc, 1984, 106(7): 2143-2149.
    TAJIMA N, TSUNEDA T, TOYAMA F, HIRAO K. A new mechanism for the first carbon-carbon bond formation in the MTG process: A theoretical study[J]. J Am Chem Soc, 1998, 120(32): 8222-8229.
    VENUTO P, LANDIS P. Formation of stilbenes and related compounds from reaction of benzyl-type mercaptans over zeolites[J]. J Catal, 1971, 21(3): 330-335.
    YAMAZAKI H, SHIMA H, IMAI H, YOKOI T, TATSUMI T, KONDO J N. Evidence for a "carbene-like" intermediate during the reaction of methoxy species with light alkenes on H-ZSM-5[J]. Angew Chem, 2011, 123(8): 1893-1896.
    SMITH B S, MARCH J著, 李艳梅译. March高等有机化学: 反应、机理与结构[M]. 第5版. 北京: 化学工业出版社, 2009. (SMITH B S, MARCH J. March's advanced organic chemistry: Reactions, mechanisms, and structure[M]. 5th ed. Beijing: Chemical Industry Press, 2009.)
    OLAH G A, KLOPMAN G, SCHLOSBERG R H. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2, 2-dimethylpropane and 2, 2, 3, 3-tetramethylbutane in FSO3H-SbF5[J]. J Am Chem Soc, 1969, 91(12): 3261-3268.
    SMITH R D, FUTRELL J H. Evidence for complex formation in the reactions of CH3+ and CD3+ with CH3OH, CD3OD, and C2H5OH[J]. Chem Phys Lett, 1976, 41(1): 64-67.
    MUNSON E J, HAW J F. NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5[J]. J Am Chem Soc, 1991, 113(16): 6303-6305.
    MUNSON E J, KHEIR A A, LAZO N D, HAW J F. In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite HZSM-5[J]. J Phys Chem, 1992, 96(19): 7740-7746.
    BLASZKOWSKI S R, VAN SANTEN R A. Theoretical study of C-C bond formation in the methanol-to-gasoline process [J]. J Am Chem Soc, 1997, 119(21): 5020-5027.
    KUBELKOV L, NOVKOV J, JRU。 P. Reaction of small amounts of methanol on HZSM-5, HY and modified Y zeolites[J]. Stud Surf Sci Catal, 1984, 18: 217-224.
    LO C S, RADHAKRISHNAN R, TROUT B L. Application of transition path sampling methods in catalysis: A new mechanism for C-C bond formation in the methanol coupling reaction in chabazite [J]. Catal Today, 2005, 105(1): 93-105.
    YAMAZAKI H, SHIMA H, IMAI H, YOKOI T, TATSUMI T, KONDO J N. Direct production of propene from methoxy species and dimethyl ether over H-ZSM-5[J]. J Phys Chem C, 2012, 116(45): 24091-24097.
    SONG W G, MARCUS D M, FU H, EHRESMANN J O, HAW J F. An oft-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34[J]. J Am Chem Soc, 2002, 124(15): 3844-3845.
    HAW J F, MARCUS D M. Well-defined (supra) molecular structures in zeolite methanol-to-olefin catalysis[J]. Top Catal, 2005, 34(1): 41-48.
    SONG W G, HAW J F. Improved methanol-to-olefin catalyst with nanocages functionalized through ship-in-a-bottle synthesis from PH3[J]. Angew Chem Int Edit, 2003, 42(8): 892-894.
    ARSTAD B, NICHOLAS J B, HAW J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J Am Chem Soc, 2004, 126(9): 2991-3001.
    BJØRGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from benzene and methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.
    SEILER M, WANG W, BUCHHOLZ A, HUNGER M. Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion[J]. Catal Lett, 2003, 88(3): 187-191.
    OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Edit, 2012, 51(24): 5810-5831.
    SONG W G, HAW J F, NICHOLAS J B, HENEGHAN C S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2000, 122(43): 10726-10727.
    MIKKELSEN Ø, RØNNING P O, KOLBOE S. Use of isotopic labeling for mechanistic studies of the methanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta[J]. Micropor Mesopor Mat, 2000, 40(1): 95-113.
    SULLIVAN R, EGAN C J, LANGLOIS G, SIEG R P. A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons[J]. J Am Chem Soc, 1961, 83(5): 1156-1160.
    MOLE T, BETT G, SEDDON D. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons using 13carbon-and deuterium-labeled feeds[J]. J Catal, 1983, 84(2): 435-445.
    MOLE T, WHITESIDE J A, SEDDON D. Aromatic co-catalysis of methanol conversion over zeolite catalysts[J]. J Catal, 1983, 82(2): 261-266.
    SASSI A, WILDMAN M A, AHN H J, PRASAD P, NICHOLAS J B, HAW J F. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B, 2002, 106(9): 2294-2303.
    SONG W G, NICHOLAS J B, SASSI A, HAW J F. Synthesis of the heptamethylbenzenium cation in zeolite-β: In situ NMR and theory[J]. Catal Lett, 2002, 81(1/2): 49-53.
    LESTHAEGHE D, HORR A, WAROQUIER M, MARIN G B, VAN SPEYBROECK V. Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion[J]. Chem-Eur J, 2009, 15(41): 10803-10808.
    HEREIJGERS B P, BLEKEN F, NILSEN M H, SVELLE S, LILLERUD K P, BJØRGEN M, WECKHUYSEN B M, OLSBYE U. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts[J]. J Catal, 2009, 264(1): 77-87.
    WANG C M, WANG Y D, XIE Z K, LIU Z P. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations: A complete cycle of side chain hydrocarbon pool mechanism[J]. J Phys Chem C, 2009, 113(11): 4584-4591.
    WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species?[J]. J Catal, 2013, 301: 8-19.
    BJØRGEN M, OLSBYE U, SVELLE S, KOLBOE S. Conversion of methanol to hydrocarbons: the reactions of the heptamethylbenzenium cation over zeolite H-beta[J]. Catal Lett, 2004, 93(1/2): 37-40.
    SVELLE S, RØNNING P O, OLSBYE U, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of propene or n-butene and methanol[J]. J Catal, 2005, 234(2): 385-400.
    TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Micropor Mesopor Mat, 2010, 136(1): 33-41.
    BHATTACHARYA D, SIVASANKER S. A comparison of aromatization activities of the medium pore zeolites, ZSM-5, ZSM-22, and EU-1[J]. J Catal, 1995, 153(2): 353-355.
    SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49): 17981-17984.
    SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46): 14770-14771.
    XU T, HAW J F. Cyclopentenyl carbenium ion formation in acidic zeolites: An in situ NMR study of cyclic precursors[J]. J Am Chem Soc, 1994, 116(17): 7753-7759.
    HAW J F, NICHOLAS J B, SONG W G, DENG F, WANG Z K, XU T, HENEGHAN C S. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5[J]. J Am Chem Soc, 2000, 122(19): 4763-4775.
    XU T, BARICH D H, GOGUEN P W, SONG W G, WANG Z K, NICHOLAS J B, HAW J F. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor[J]. J Am Chem Soc, 1998, 120(16): 4025-4026.
    LESTHAEGHE D, VAN DER MYNSBRUGGE J, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V. Full Theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5[J]. ChemCatChem, 2011, 3(1): 208-212.
    LESTHAEGHE D, DE STERCK B, VAN SPEYBROECK V, MARIN G B, WAROQUIER M. Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons[J]. Angew Chem Int Edit, 2007, 46(8): 1311-1314.
    VAN SPEYBROECK V, VAN DER MYNSBRUGGE J, VANDICHEL M, HEMELSOET K, LESTHAEGHE D, GHYSELS A, MARIN G B, WAROQUIER M. First principle kinetic studies of zeolite-catalyzed methylation reactions[J]. J Am Chem Soc, 2011, 133: 888-899.
    LI J Z, WEI Y X, QI Y, TIAN P, LI B, HE Y L, CHANG F X, SUN X D, LIU Z M. Conversion of methanol over H-ZSM-22: The reaction mechanism and deactivation[J]. Catal Today, 2011, 164(1): 288-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2883) PDF downloads(2739) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return