Volume 41 Issue 08
Aug.  2013
Turn off MathJax
Article Contents
WANG Yong-zhao, LI Feng-mei, CHENG Hui-min, FAN Li-yuan, ZHAO Yong-xiang. A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 972-977.
Citation: WANG Yong-zhao, LI Feng-mei, CHENG Hui-min, FAN Li-yuan, ZHAO Yong-xiang. A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 972-977.

A comparative study on the catalytic properties of high Ni-loading Ni/SiO2 and low Ni-loading Ni-Ce/SiO2 for CO methanation

  • Received Date: 2013-05-27
  • Rev Recd Date: 2013-06-17
  • Publish Date: 2013-08-30
  • Two Ni-based catalysts of 13%Ni/SiO2(13Ni/Si) and 7%Ni-2%Ce/SiO2(7Ni-2Ce/Si, by weight) were prepared by the incipient-wetness impregnation method and characterized with N2-sorption, XRD, H2-TPR, FT-IR, TEM, H2-TPD and CO-TPD techniques. It was shown that addition of Ce promoter generated an interaction among NiO, CeO2 and SiO2, which changed chemical environment of Ni-O-Si bond, enhanced the dispersion and reduction of NiO, and increased the active surface area. In particular, a new type of moderately strong CO adsorption sites was formed on the surface of the 7Ni-2Ce/Si catalyst. As a result, the low Ni-loading 7Ni-2Ce/Si catalyst exhibited higher CO adsorption capacity and CO methanation catalytic activity than the high Ni-loading 13Ni/Si. Under the reaction conditions of 1% CO (volume fraction in H2 atmosphere), GHSV of 7 000 h-1 and atmospheric pressure, the temperature for complete conversion of CO over the 7Ni-2Ce/Si catalyst was 230 ℃, being 30 ℃ lower than that found over the high Ni loading 13Ni/Si catalyst.
  • loading
  • WU R F, ZHANG Y, WANG Y Z, GAO C G, ZHAO Y X. Effect of ZrO2 promoter on the catalytic activity for CO methanation and adsorption performance of the Ni/SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 578-582.
    PARK E D, LEE D, LEE H C. Recent progress in selective CO removal in a H2-rich stream[J]. Catal Today, 2009, 139(4): 280-289.
    WANG N, SUN Z J, WANG Y Z, GAO X Q, ZHAO Y X. Preparation of bimetallic Ni-Fe/γ-Al2O3 catalyst and its activity for CO methamation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(3): 219-223.
    WANF B W, SHANG Y G, DING G Z, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1390-1396.
    GALLETTI C, SPECCHIA S, SARACCO G and SPECCHIA V. CO selective methanation over Ru/γ-Al2O3 catalysts in H2-rich gas for PEMFC applications[J]. Chem Eng Sci, 2010, 65(1): 590-596.
    DAGLE R A, WANG Y, XIA G G, STROHM J J, HOLLADAY J, PALO D R. Selective CO methanation catalysts for fuel processing applications[J]. Appl Catal A: Gen, 2007, 326(2): 213-218.
    TRIMM D L. Minimisation of carbon monoxide in a hydrogen stream for fuel cell application[J]. Appl Catal A: Gen, 2005, 296(1): 1-11.
    SONG L, CHEN T H, LI Y X, LIU H B, KONG D J, CHEN D. Performance of palygorskite supported Cu-Mn-Ce catalyst for catalytic oxidation of toluene[J].Chinese Journal of Catalysis, 2011, 32(4): 652-656.
    WANG W, WANG J B, ZHU W P, YANG S X, HE W J, CHUN X. Catalytic wet air oxidation of acetic acid and phenol with Ru/ZrO2-CeO2 catalysts[J]. Journal of Molecular Catalysis(China), 2007, 21(5): 401-405.
    ZHAO B X, LIU L X, ZHANG Y Z, CAO X, ZHANG X L, JIN Q T. Effect of doped CeO2 loading on catalytic activity of Cu-Ni-Ce/SiO2 catalyst[J]. Journal of Molecular Catalysis(China), 2008, 22(6): 507-512.
    LIAO Q L, LIANG Z C, QIN Y N, TIAN J X. Promoting effects of La2O3 and CeO2 on catalytic activity of Ni catalysts[J]. Journal of the Chinese Society of Rare Earths, 1995, 13(1): 35-38.
    JIN R C, CHEN Y X, LI W Z, JI Y Y, QIN Y S, JIANG Y. Ni/α-Al2O3 catalyst for the partial oxidation of methane to syngas[J]. Acta Physico-Chimica Snica, 1998, 14(8): 737-741.
    ZHENG W Q, ZHANG J, GE Q J, XU H Y, LI W Z. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen[J]. Appl Catal B: Environ, 2008, 80(1/2): 98-105.
    LI F M, WANG Y Z, ZHANG Z, ZHAO Y X. Promoting effects of Ce promoter on catalytic activity of Ni/SiO2 catalyst for CO methanation[J]. Ind Catal, 2011, 19(11): 70-74.
    WEI S Q, LI L B, SHUANG Y C, XU H Y, XU G L. Study on performance of co-precipitated Ni-La2O3/ZrO2 catalyst for CO2 methanation[J]. Nat Gas Chem Ind, 2004, 29(5): 10-13.
    WANG Y Z, WU R F, ZHAO Y X. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases[J]. Catal Today, 2010, 158(3/4): 470-474.
    TOHJI K, UDAGAWH Y, TANABE S, UENO A. Catalyst preparation procedure probed by EXAFS spectroscopy. 1. Nickel on silica[J]. J Am Chem Soc, 1984, 106(3): 612-617.
    VELU S, GANGWAL S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ion, 2006, 177(7/8): 803-811.
    GAO X Q, WANG Y Z, LI H T, ZHAO Y X. Effect of manganese promoter on the catalytic performance of Ni/γ-Al2O3 catalyst for CO2 methanation[J]. Journal of Molecular Catalysis(China), 2011, 25(1): 49-53.
    LU G Z, WANG R. Effect of CeO2 on the adsorption capacity of NO, CO on the Cu-Mn-O catalyst[J]. Journal of the Chinese Society of Rare Earths, 1993, 11(4): 311-316.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1549) PDF downloads(700) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return