留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2003年  第31卷  第03期

显示方式:
摘要:
煤炭地下气化产气过程与气化炉体的温度分布和渗流条件密切相关。根据急倾斜煤层赋存条件和气化过程的特点,建立了急倾斜煤层地下气化数学模型。介绍了模型参数的确定方法,采用控制容积方法对模型进行了求解,并在模型实验的基础上,对计算结果进行了分析。从温度场分布来看,计算值略高于实测值,各测点相对误差基本均在10%以内。根据模拟计算结果,随着气化通道长度增加,煤气热值提高,但在还原区以后,提高的幅度减小,温度场对煤气热值产生显著影响。由于受温度的影响,在高温区,煤气组分浓度场实测值的变化梯度大于计算值。结果表明,模拟值与实验值能够较好地相吻合,说明对急倾斜煤层地下气化温度场和浓度场的数值模拟是合理的。
摘要:
采用数值模型,研究了煤热解、燃烧过程中挥发分氮的析出、中间含氮产物HCN的生成以及转变为NO的过程。应用有限体积法对质量、化学组分、动量和热量守恒方程进行离散求解,并与试验结果进行了比较。研究结果揭示了炉膛温度、颗粒直径以及氧浓度等参数对煤中挥发分氮的析出和进一步转化为NO过程的影响。
摘要:
在常压,900 ℃~1 050 ℃,20%~100%水蒸气分压范围内,在热天平上研究了两种石油焦的气化反应特性。实验表明,在水蒸气气氛下石油焦具有较好的气化反应活性,气化过程中反应速率R=dx/dt在转化率0.2附近有一最大值,而比气化反应速率M=dx/dt/(1-x)则处于单调递增状态。通过对石油焦气化过程中有效比表面积随碳转化率变化的实验表明,以实际碳基为基准的有效比表面积Se随反应的进行不断增大,M和Se的变化趋势相同。
摘要:
研究了平顶山十二矿高灰熔点煤灰分别添加助熔剂(氧化钙和三氧化二铁)后灰熔点的变化规律,并考察了1 300 ℃~1 550 ℃范围内适宜助熔剂添加量下煤焦的气化反应性变化规律。实验表明:以灰的流动温度(t3)为选择依据,十二矿煤助熔剂氧化钙、三氧化二铁的适宜添加量相应为:3%~7%和5%~10%;助熔剂添加量对煤焦气化反应性的影响与气化温度密切相关。较低气化温度时,煤焦的气化反应性随添加量的增加而提高,但随温度的提高,助熔剂添加量对煤焦反应性的影响逐渐减弱,温度升至1 550 ℃时,助熔剂的影响几乎消失。助熔剂在高温下的熔融、团聚导致其在煤焦中分散性的改变,从而使助熔剂在较低温度下具有的催化作用很快消失,这可能是高气化温度下煤焦气化反应性不受助熔剂影响的最重要原因之一。
摘要:
以淮北煤田6煤层煤为样品,采用中子活化法、化学方法、X射线衍射及扫描电镜等方法对煤及其灰样品中的矿物质、微量元素进行了分析,在此基础上,研究了样品中主要矿物的种类及其形成时的影响因素,分析了它们在燃烧前后的主要变化。通过分析可知,样品中主要含有高岭石、石英、方解石和黄铁矿以及多种微量元素;在燃烧过程中,微量元素的含量以及矿物的种类发生了变化,并形成高温稳定的矿物种类。
摘要:
在自制的实验装置上,以特定的压力将3 g~5 g的混合煤灰在内径8 mm~10 mm电熔刚玉管内压制成柱状,采用2 ℃/min~4 ℃/min的温升速率和10 mL/min~40 mL/min的空气流量,通过测量灰柱两端的压降随温度的变化关系,绘制压差温度曲线。曲线中最大压差点所对应的温度就是混合煤灰的初始粘结温度。利用此方法测量了IHI(IshikawajimaHarima Heavy Industries CO. LTD)循环流化床锅炉飞灰和秦皇岛北山热电厂循环流化床锅炉飞灰的初始粘结温度分别为900 ℃±10 ℃和1 300 ℃±10 ℃,从一个侧面解释了IHI循环流化床锅炉结焦严重,无法正常运行的原因。
摘要:
用共振搅拌反应器研究了钼酸胺催化剂对煤-油共处理中煤总转化率及产物的影响。研究表明,低温时(390 ℃),催化剂能促进前沥青烯向小分子苯可溶物转化;高温时(480℃),有催化剂时煤的转化率低于无催化剂时煤的转化率,而且在产物中苯可溶物产率与前沥青烯产率全部减少,说明产物发生了缩聚反应。在高温时(390 ℃)随反应时间的延长,煤转化率下降,同时在产物中苯可溶物产率与前沥青烯产率呈下降趋势。反应温度越高,反应时间越长,缩聚越严重。反应体系有供氢溶剂不能抑制缩聚反应。
摘要:
在间歇式高压反应釜中,考察了生物质(稻杆)在超临界水中的热解行为,研究了热解产物分布随反应温度、压力以及停留时间的变化规律。结果表明,气体收率随温度升高而增加,油收率则先增加后减少,380 ℃~410 ℃产油量较大,可达28.57%;气体收率和油收率随压力升高而增加,残渣收率则明显减小,但当压力高于31.5 MPa后,油收率基本不再随压力的升高而变化;气体收率随停留时间的延长而增加,油收率则先增加后减少。
摘要:
利用化学方法对钼基分子筛催化剂上的CH2Cl2可溶性积炭和不可溶性积炭进行分离,并通过质谱、红外光谱、核磁共振等手段对积炭进行了表征。结果表明,可溶性积炭的主组分为一种非芳烃物质,它的组成不随反应时间、反应温度和催化剂的酸性的变化而变化。可溶性积炭分子对催化剂的活性影响不大。高不饱和度的稠环芳烃型不可溶性积炭分子是催化剂失活的主要原因。
摘要:
考察了不同正丁胺(NBA)模板剂用量合成ZSM-5沸石的物化特性和催化性能。采用XRD、SEM、NH3-TPD和BET等手段对合成样品的物化特性进行了表征。结果表明,模板剂与SiO2摩尔比在0.67~0.22时合成的ZSM-5沸石结晶度高于90%;随着模板剂用量的减少,ZSM-5沸石的平均粒径减小,强酸量也存在相同的趋势。丙烯齐聚反应评价结果显示,模板剂用量对合成ZSM-5沸石的催化活性有显著影响,模板剂与SiO2摩尔比在0.67~0.45之间合成的沸石催化性能较好。
摘要:
1,4-环己烷二甲醇是生产改性聚酯的中间单体。采用铜系催化剂,以1,4-环己烷二甲酸二甲酯为原料,低压加氢生成1,4-环己烷二甲醇。考察了反应温度、反应压力等对反应活性的影响,进行了200 h的催化剂寿命评价,并对催化剂进行了表征。结果表明,在反应温度200 ℃,反应压力3.0 MPa的条件下,1,4-环己烷二甲酸二甲酯的转化率大于95%,1,4-环己烷二甲醇的选择性大于98%,XRD谱图说明金属铜是该催化剂的主要活性中心。
摘要:
利用均相沉淀法、氨水滴定法制备纳米α-FeOOH粒子,以该粒子为活性组分制备催化剂,利用微反-色谱联用活性评价技术,在常压、空速10 000 h-1、25 ℃~60 ℃温度范围内考察了纳米α-FeOOH催化剂对COS催化水解的活性。采用热重法对纳米α-FeOOH催化剂脱除H2S的性能进行了研究。结果表明:纳米α-FeOOH催化剂对COS水解在低温度、大空速下具有高的活性,系列Ⅰ和系列Ⅱ催化剂分别在60 ℃和40 ℃~45 ℃时COS转化率达到100%。在60 ℃时各种催化剂吸附H2S的能力最强,最高饱和硫容可达到21.72w%。催化剂表面能量分布不均匀,COS催化水解在低温时存在补偿效应。
摘要:
采用XRD和TPD技术对两种不同模板剂合成的β沸石(F-β沸石,W-β沸石)进行了孔结构的表征。通过实际体系烷基化反应活性评价和加速失活稳定性实验找出两种不同合成方法的β沸石在催化性能上的差异。并对工业失活和加速失活催化剂样品上沉积炭物种进行了分析,结果表明导致工业失活和加速失活的物质有相似之处。造成失活的主要物质均为二异丙苯的进一步反应产物——多环芳烃等物质,它们不易从孔道中传递出来,堵塞孔道,占据活性位,是造成失活的主要原因。由于两种不同β沸石的孔结构分布情况不同,对二异丙苯的进一步反应的产物的空间位阻和抑制作用不同,从而两样品的稳定性不同。F-β沸石的孔分布比W-β沸石合理,有较好的抑制炭物质生成的作用,故有较好的稳定性。
摘要:
研究了渣油裂化催化剂的基质改性对催化剂性能的影响。结果表明,经高温及酸处理后,高岭土的孔容、比表面及其表面酸性明显增加;对拟薄水铝石进行磷改性,可增加氧化铝的表面酸性中心数目,降低酸强度。用改性的高岭土和氧化铝作为降烯烃渣油裂化催化剂的活性基质,可提高催化剂的渣油裂化及氢转移、异构化活性,并减少催化剂上的积碳。
摘要:
以正硅酸乙酯和硝酸铝分别为硅源和铝源,硝酸镍为活性组分前驱物,采用溶胶-凝胶法制备了NiO-SiO2,NiO-Al2O3和NiO-Al2O3-SiO2催化剂。顺酐液相选择加氢活性和选择性评价结果表明:顺酐在三种催化剂上转化率都在99%以上,而产物的选择性有较大的差别,其中NiO-SiO2催化剂上γ-丁内酯的选择性达80.1%,NiO-Al2O3催化剂上丁二酸酐选择性达99%以上,NiOAl2O3SiO2催化剂上两种产物都有。XRD,TPR等体相结构和表面结构的表征说明,三种催化剂的相组成、NiO的分散性及与载体的相互作用存在明显差别,这些差别可能是造成不同选择加氢性能的原因。
摘要:
分析了以石油焦为原料采用复合活化工艺制备的吸附剂的孔结构特性。发现吸附剂微孔含量在90%以上并且主要集中于1 nm~2 nm之间,是富含纳米孔的吸附材料。甲烷在此吸附剂上的吸附研究表明,在25 ℃,3.5 MPa的条件下,甲烷质量吸附量超过14.0%;有效体积吸附量超过120?V/V(吸附甲烷的体积/容器的体积)。甲烷在富纳米孔炭质吸附剂上的等温吸附曲线表明,吸附类型属于Ⅰ类吸附,符合微孔填充理论;等压吸附曲线表明,低温有利于体积吸附量的增加;吸附剂中水分的增加对吸附有不利的影响。
摘要:
实沸点蒸馏原油获得燃料馏分油。采用拟静态法测定不同沸程的22种燃料馏分油在系列温度下的泡点蒸气压,用Antoine方程关联蒸气压与温度的关系。在泡点压力分别为10 kPa、30 kPa、50 kPa、80 kPa和101.325 kPa时,按虚拟组分处理法计算了燃料宽馏分油中各虚拟组分的气-液相平衡常数,关联了气-液相平衡常数与虚拟组分的沸点以及相平衡温度、压力的关系,得到的表达式可以计算常压沸点范围在348.15 K至623.15 K间燃料宽馏分油的气-液相平衡常数,经180个数据点回归检验,平均误差为4.5%。
摘要:
摘要:
摘要: