留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2015年  第43卷  第12期

显示方式:
摘要:
通过激光粒度仪、X射线荧光光谱仪、扫描电子显微镜等现代化分析测试技术对褐煤样、飞灰样以及换热废锅中的积灰样进行了粒度分布、化学组成、晶体矿物组成、微观形貌、微区化学组成等特征的分析,研究影响飞灰黏附特性的因素。并通过引入富集系数,描述各个元素在煤灰、正常飞灰、废锅积灰中的迁移富集情况。结果表明,在废锅积灰中有含铁矿物的生成,同时Na、K、Fe、S、P元素在废锅积灰中发生富集,在飞灰与积灰颗粒边缘处有大量的Fe、Na元素的富集。
摘要:
采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。
摘要:
利用热天平对比研究了大同煤及煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧行为,探讨CO2和H2O气化反应对其富氧燃烧特性的影响。结果表明,在5%氧气浓度下,煤粉在O2/N2、O2/CO2和O2/H2O/CO2中的燃烧速率按顺序依次降低。氧气浓度降低到2%,由于CO2和H2O气化反应的作用,煤粉在高温区的整体反应速率按顺序依次增大。当氧气浓度为5%时,煤焦在O2/CO2中的燃烧速率要低于O2/N2中的燃烧速率,但燃烧反应推迟后气化反应的参与使得煤焦在O2/H2O/CO2中的整体反应速率显著升高。当氧气浓度降低到2%后,随着温度的升高,在CO2气化反应的作用下,煤焦在O2/CO2中的整体反应速率逐渐高于O2/N2中的燃烧速率。在O2/H2O/CO2中,由于H2O在共气化中起主要作用,煤焦在O2/H2O/CO2高温区的整体反应速率进一步升高。动力学分析表明,在5%氧浓度时,煤焦在O2/N2、O2/CO2和O2/H2O/CO2中的表观活化能依次升高。随着氧气浓度的降低,在不同反应气氛中的表观活化能均有所下降。
摘要:
采用TG-FTIR联用实验系统,在氩气氛围下研究了含氮模型化合物甘氨酸酐热解失重特性以及NOx前驱物的释放特性;研究了K、Ca、Fe金属盐对甘氨酸酐热解氮转化的影响。结果表明,在20、40、60℃/min升温速率下,NH3、HCN、HNCO为甘氨酸酐热解的主要气相含氮产物,其中,NH3产率最大,HCN次之,HNCO生成量最小;随升温速率增加,TG失重曲线右移,热解剩余物减少;且HCN和HNCO的产率增加,NH3产率降低;K、Ca、Fe盐均对甘氨酸酐热解氮转化具有催化作用,其中,K、Ca有利于促进NH3、HCN的生成,Fe对HCN的生成具有促进作用,但对NH3的生成起到抑制作用。
摘要:
采用两段式催化气化方式研究了生物质热解气化过程中碱金属的挥发对Ni基催化剂活性的影响。实验结果表明,负载K盐的纤维素水蒸气催化气化过程中,K挥发后会在催化剂表面沉积,而少量K的存在和表面沉积不但能够提高镍基催化剂的抗积炭能力,而且有助于提高其催化活性,产生更多的氢气。然而纤维素中K的浓度过大,将会抑制Ni基催化剂的效果;K在催化剂上的沉积随催化剂循环次数的增加而增加,K的含量愈高,对催化剂的抑制效果愈明显,从而缩短了催化剂的使用寿命。
摘要:
对杉木屑、棉杆、竹屑三种生物质热解制得的木醋液产率、基本理化性质及其有机成分进行了分析研究。结果表明,三种生物质原料在350℃下热解制得的粗木醋液、精制木醋液产率相差不大,相同条件下氯化钾浸渍处理后的杉木屑热解所得的粗木醋液、精制木醋液的产率有所降低。三种原料制得的精制木醋液的理化性质不同,杉木屑木醋液的pH值最小,密度最大,竹屑和棉杆木醋液的有机酸含量相对较高。采用GC-MS对精制木醋液中的有机成分进行了分析,结果表明,杉木屑木醋液中的主要组分为酸类、酚类和酮类化合物,棉杆和竹屑木醋液中的主要组分除这三类有机物质外,还含有相对含量较高的醇类化合物。酸类和酚类化合物在三种木醋液中的相对含量依次是竹屑 >棉杆 >木屑;酮类的相对含量依次是木屑 >棉杆 >竹屑。氯化钾处理后的木屑热解所得的木醋液中主要组分酚类和酮类化合物的相对含量有所降低,酸类化合物的相对含量增加,主要表现为乙酸相对含量的增加。与杉木屑木醋液相比,KCl处理后的杉木屑木醋液中的醇类化合物相对含量增加了1倍左右。
摘要:
利用生物碳源在煅烧过程中产生的还原性气体还原金属氧化物来制备自还原型双功能催化剂Ni-W/SBA-15,将其直接应用于催化木质纤维素生物质氢解制备低碳多元醇,省去了催化剂还原步骤。TG和XRD结果表明,制备过程中引入的蔗糖含量为3.0 g时,催化剂中被还原的活性金属含量最高;随着Ni含量的增加,镍粒子逐渐增大;W物种为非晶态。SEM和TEM分析表明,SBA-15均匀地负载Ni、W粒子,且粒径小、分散性好。在自还原型催化剂10%Ni-15%W/SBA-15催化作用下,在反应温度为240℃、氢压为5.0 MPa和反应时间为6 h的条件下,微晶纤维素完全转化,低碳多元醇的收率达68.14%;当以小麦秸秆粉作为反应物时,转化率为85.32%,低碳多元醇总收率为44.71%。
摘要:
以不同官能化碳纳米管(原始MCN、氨基化AMCN和石墨化GMCN等)作为载体,通过浸渍法制备了Ru/CNTs催化剂,并应用于山梨醇氢解制1,2-丙二醇和乙二醇反应中。利用XRD、HRTEM、XPS和ICP-AES等方法对催化剂进行了表征,考察了官能团性质、碱助剂等因素对山梨醇氢解性能的影响。结果表明,与Ru/MCN或Ru/GMCN相比较,Ru/AMCN催化剂对山梨醇氢解有更高的活性,在205℃、5.0 MPa氢压条件下,以Ca(OH)2为添加剂,山梨醇的转化率可达99.5%,1,2-丙二醇(1,2-PD)和乙二醇(EG)的总产率为47.7%。催化剂重复利用五次,催化活性无明显下降。
摘要:
γ-Al2O3为载体,采用浸渍法制备了不同P添加量的负载型NiW加氢催化剂,采用固定床加氢装置,对模型化合物萘和低温焦油富集的芳烃组分进行了催化加氢。催化剂采用N2吸附、XRD、H2-TPR、XPS以及NH3-TPD的方法进行表征,加氢产物采用GC-MS和GC×GC-TOFMS进行分析。结果表明,P助剂能够扩大催化剂的孔径并促进活性金属组分在载体表面的分散;当P含量为1.0%~1.5%时,能够促进Ni-W-O混合相生成,并提高催化剂表面弱酸的含量;萘加氢反应的转化率和十氢萘的选择性也在添加1.0%的P时达到最高,分别为80%和50%左右;低温焦油芳烃组分的催化加氢结果显示,芳烃饱和加氢反应占优,绝大部分芳烃转化为环烷烃,且催化剂具有显著的脱除杂原子效果。
摘要:
利用共沉淀法,制备一系列在凹凸棒土上负载不同含量的NiO-Fe2O3催化剂。以乙酸、乙醇和苯酚的水溶性溶液为生物油模型物,在自制的三段式固定床反应器中,考察了NiO-Fe2O3的负载量、反应温度、水碳比(S/C)对生物油模型物重整制氢的影响。结果表明,所获得的氢气产率最高的工艺条件为,在650℃条件下,以水碳比8~10的生物油模型为实验原料,使用自制的50%NiO-50%Fe2O3/PG型催化剂,可使气体产物中H2的相对含量达到最大66.15%。
摘要:
用混合煅烧法制备了CuWO4/C复合物,并采用XRD、SEM、和BET等技术对其结构进行表征。以CuWO4/C复合物为催化剂、过氧化氢为氧化剂、1-乙基-3-甲基咪唑硫酸乙酯盐离子液体为萃取剂氧化脱除模拟油中的二苯并噻吩(DBT)。考察了反应温度、双氧水加入量、萃取剂加入量等因素对脱硫效果的影响。结果表明,在相同的实验条件下,相比于CuWO4,CuWO4/C复合物具有更高的脱硫率。在模拟油为5.0 mL、催化剂加入量为0.02 g、H2O2加入量0.2 mL、萃取剂加入量1.0 mL、反应温度70℃、反应时间180 min的最佳实验条件下,DBT转化率可达到98.2%,催化剂循环使用四次活性没有明显降低。
摘要:
对低浓度气相萘在两种常见介孔分子筛MCM-41和SBA-15上的吸附特性进行研究。得到了萘在两种吸附剂上的吸附等温线和不同初始浓度下的穿透曲线,并分别与吸附等温线模型(Langmuir、Freundlich、D-R)和恒定浓度波动力学模型进行了拟合。结果表明, Langmuir模型能很好描述低浓度气相萘的吸附等温线(R2均在99%以上);具有微孔结构的SBA-15对萘的吸附能力要优于仅具备介孔结构的MCM-41。动力学模型在初始浓度较低时能较好地预测萘在吸附剂上的穿透曲线,且在SBA-15上的相关系数高于MCM-41;萘在2.76 mol/L时具有较大介孔的SBA-15的总传质系数Ka更高,表明萘在SBA-15上的总传质阻力更低,更能较快达到传质平衡。
摘要:
将HZSM-5与MCM-41按不同质量比混合得到复合分子筛载体,以四乙烯五胺(TEPA)为改性剂,采用浸渍法将其负载到复合分子筛上,制备了一系列新型的具有多级微/介孔结构的固态胺吸附剂。采用N2吸脱附、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)等手段对吸附剂进行表征。在固定床反应器中考察了HZSM-5和MCM-41的质量比、TEPA负载量、吸附温度、进气流量和CO2分压等因素对CO2吸附性能的影响。结果表明,当HZSM-5与MCM-41的质量比为1:1、TEPA负载量为30%、吸附温度为55℃、进气流量为30 mL/min时,平衡吸附量高达3.57 mmol/g,且经10次吸脱附循环后,吸附量仅下降8.1%。HZSM-5/MCM-41-30%TEPA对CO2的吸附过程包括快速的穿透吸附和相对缓慢的逐渐平衡阶段,且穿透吸附量接近于平衡吸附量的80%。HZSM-5/MCM-41-30%TEPA对CO2的吸附过程符合Avrami动力学模型,表明CO2吸附是物理吸附和化学吸附的结果。
摘要:
采用沉淀法合成一系列TiO2改性的镁基吸附剂,利用XRD、SEM和氮气吸附等方法对吸附剂进行表征,通过变温吸附-脱附动态循环实验考察其CO2吸附性能。随着TiO2含量的增加,样品的结晶度逐渐下降,同时由于焙烧后生成钛酸镁,样品比表面积逐渐减小。当TiO2添加量为2%(质量分数),此时吸附剂呈直径为4.0~5.0μm的球形,局部为纳米片状结构,该吸附剂自第二次循环开始吸附能力无明显变化;经过50次变温吸附脱附循环实验后,动态吸附容量可达6.64%(质量分数),这是由于TiO2改性后生成的钛酸镁为该吸附剂提供了刚性骨架,促进了活性组分的分散,并提高了吸附剂的稳定性。
摘要:
制备了纳米级V2O5-WO3/TiO2脱硝催化剂,采用浸渍法模拟催化剂NaCl中毒,吸附法模拟单质汞Hg0作用于催化剂,运用X射线衍射分析(XRD)、扫描电镜(SEM)、比表面积分析(BET)、NH3程序升温脱附(NH3-TPD)、傅里叶变换红外光谱分析(FT-IR)等技术表征分析了NaCl和Hg0对催化剂性能的影响。同时,结合已有的研究分析,提出两者对催化剂的作用机理。实验结果表明,NaCl的添加会造成催化剂表面团聚黏结,催化剂比表面积减小,且NaCl负载量越大,对催化剂毒害作用越大。Na会中和催化剂的Brønsted酸性位(V-OH),最终形成-V-O-Na及Cl-V-O-Na,造成催化剂失活。Hg0对催化剂的表面形貌及物相组成没有影响,并主要通过吸附在催化剂的V活性位上使其脱硝性能有所减弱。当NaCl和Hg0同时存在时,吸附的Hg会与NaCl中引入的Cl结合,形成HgCl、HgCl2,并部分取代-Na,最终形成-V-O…Hg及-V-O-Hg-Cl。
摘要:
采用V2O5-WO3/TiO2催化剂,对选择性催化还原(SCR)烟气脱硝装置出口PM2.5物性进行分析,考察SO2氧化与PM2.5形成的关系,并采用原位漫反射红外光谱(DRIFTS)对SCR脱硝过程中NH4HSO4的生成及SCR脱硝温度条件下的NH4HSO4热稳定性进行了分析研究。结果表明,经SCR脱硝后,亚微米级细颗粒数浓度明显升高,且形貌特征及元素组成发生变化,形成的细颗粒主要为NH4HSO4及少量(NH4)2SO4;SCR烟气脱硝对PM2.5排放特性的影响主要通过以下途径:一是SO3与SCR烟气脱硝系统中的NH3、H2O反应形成;二是SO3与逃逸的NH3、H2O在SCR脱硝装置后续系统发生反应形成硫酸氢铵与硫酸铵;此外还与SO3和烟气中游离的CaO等碱土金属氧化物反应形成硫酸盐,随烟气携带出SCR脱硝装置有关。
摘要:
利用水合肼还原法制备的TiO2/Cu2O复合光催化剂对活性炭纤维(ACF)进行改性,利用SEM、XPS、BET以及XRD对其进行表征,研究改性后ACF的性质及其脱硫脱硝效果。研究表明,TiO2/Cu2O同时改性后的ACF表面孔径减小,但表面石墨碳和羰基(C=O)官能团增加,增强了ACF对NO和SO2的吸附能力,从而提高了脱硫脱硝的效率,该催化剂在40℃、可见光的催化下脱硫效率达90%,脱硝效率达60%。