留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2019年  第47卷  第8期

显示方式:
论文
摘要:
随着新疆超大煤田的相继发现,新疆煤凭借储量大、碱金属含量高、在热利用过程中易造成锅炉沾污、结垢等问题而得到普遍关注。对高碱煤在燃烧过程中钠挥发特性及其影响因素进行更全面的探究,可为高碱煤的高效清洁利用提供重要参考。本文统计、分析了已发表论文中高碱煤燃烧钠挥发特性的相关数据,研究得到,绝大多数高碱煤中的钠以水溶性钠为主,部分煤(神华宽沟煤和后峡煤)则以不溶性钠为主;不溶性钠含量较高的煤,盐酸可溶性钠和醋酸可溶性钠含量也较高。本文对比研究了四个主要影响钠迁移转化的因素(钠形态和含量、Cl的含量、灰组分和燃烧温度)得出,温度对钠挥发量的影响最大,温度的升高可显著增加钠挥发量,900℃后又可加快挥发速率;当钠含量分布在2000-4000 μg/g时,挥发量与总量之间具有良好的正相关,与可溶性钠含量无关;当燃料中Na和Cl物质的量比低于3.5时,Cl对钠的挥发有明显的促进作用,大于10以后,钠的挥发量较低;钠挥发量与Na和[(Si+Al)-(Ca+Mg)]物质的量比有明显的负相关。本文根据现有的研究成果,考虑钠的赋存形态及影响挥发的因素后,将钠在燃煤过程中的迁移转化行为归纳为三个阶段(内部转化、外部挥发和转化、凝结)和四条路径。
摘要:
为探究溶剂特性对煤加氢液化中间产物反应行为的影响,以新疆淖毛湖煤作为原料,四氢萘、循环溶剂及十氢萘作为供氢溶剂,在高压搅拌釜中进行直接加氢液化实验,并运用电子顺磁共振手段分析了中间产物-沥青质的自由基浓度的变化。结果表明,四氢萘溶剂中沥青质随反应温度的升高在大量生成的同时又被转化,产率从290℃的12.92%到350℃的最大34.13%再到430℃的15.98%;循环溶剂中沥青质产率先持续上升,290℃即有31.89%,400℃达到最大47.96%,之后由于结焦反应降低至33.90%。十氢萘溶剂中沥青质产率变化趋势与四氢萘一致。三种溶剂中沥青质自由基浓度的变化趋势相同,均在350℃达到最大值,分别是1.778×1018、2.323×1018和1.930×1018/g,整体上看循环溶剂数值要高于四氢萘,十氢萘介于两者之间。而四氢萘及循环溶剂中沥青质的g值在2.00323-2.00403,变化趋势与液化气体产物中COx含量变化相吻合。
摘要:
利用重介质分选法分别将两种高有机硫炼焦煤分选为密度范围不同的五个组分。采用X射线光电子能谱仪(XPS)、核磁共振波谱仪(13C NMR)和热解质谱联用技术(Py-MS)探究不同分选组分中硫的赋存形态及其热变迁行为。结果表明,不同分选组分中硫的分布、赋存形态及其所处化学环境存在显著差异。有机硫主要分布在低密度组分(D1)中,且以噻吩硫的形式存在;无机硫作为矿物质组分主要分布于高密度组分(D5)中。随着分选组分密度的增大,其脂肪碳的比例降低,芳香碳的比例增加,D1中硫醇、硫醚等硫化物的含量明显增加。热解过程中脂肪碳结构裂解生成的挥发分促进含硫气体的释放,进而提高了D1的脱硫效率,D5中硫的热变迁行为则主要受煤中矿物质的影响。
摘要:
为了评价不同增容剂对煤直接液化残渣改性沥青低温性能的影响,首先,通过正交实验确定出三种增容剂(硅烷偶联剂、苯甲醛、二甲苯)各自的最佳掺量及掺入方式;其次,采用双边缺口拉伸(DENT)试验评价加入三种增容剂后沥青的低温抗延性断裂性能;最后,结合SEM照片并利用Image Pro plus图像处理软件计算加入三种增容剂后沥青中煤直接液化残渣的分散面积比,以定量地表征三种增容剂对煤直接液化残渣改性沥青低温性能的改善效果。结果表明,加入适量增容剂在一定程度上有助于煤直接液化残渣在沥青中的分散,提高两者之间的相容性,保持煤直接液化残渣改性沥青体系的长期稳定状态,避免因煤直接液化残渣的沉淀聚集而在相界面产生应力集中,增强煤直接液化残渣改性沥青的低温抗延性断裂性能。三种增容剂对煤直接液化残渣改性沥青低温性能改善效果不同,硅烷偶联剂最优,次之为苯甲醛,最差为二甲苯。
摘要:
采用无沉淀剂水热法一步合成了MoO3-SnO2复合金属氧化物催化剂,通过调变Mo/Sn物质的量比,考察了催化剂上活性组分MoOx分散程度对二甲醚(DME)低温氧化生成甲酸甲酯(MF)反应性能的影响。当Mo/Sn=1:2,反应条件为150℃时,催化剂表现出较好的催化性能,DME转化率为22.0%,MF选择性达到77.6%。实验中采用TEM、XRD、Raman、FT-IR、NH3-TPD及H2-TPR等表征对催化剂晶体结构及表面性质进行了分析。结果发现,Mo/Sn物质的量比变化会对催化剂晶体结构产生显著影响,钼氧化物在SnO2表面形成不同分散程度的MoOx结构,这种钼氧化物结构的变化进一步影响了催化剂表面的酸性及氧化还原性,是造成催化性能差异的主要原因。
摘要:
采用纳米浇铸法制备了高比表面积(345 m2/g)且孔径均一的有序介孔SiC材料(SiC-OM),以商用SiC(49 m2/g,SiC-C)材料为参比载体。采用等体积浸渍法分别制备了Ni/SiC-OM和Ni/SiC-C,并考察其在CH4-CO2重整反应中的催化性能。利用ICP、BET、XRD、H2-TPR、XPS、HRTEM、TG和Raman等手段对反应前后的两种催化剂进行表征。结果表明,在700℃、1.013×105 Pa和12 L/(h·g)的重整条件下,Ni/SiC-OM的平均积炭速率比Ni/SiC-C降低了一个数量级,这主要归因于强金属-载体相互作用和有序介孔骨架的"限域效应"作用。
摘要:
采用高温固相法制备了系列Zn改性的层状K-Fe-Zn-Ti催化剂,用于CO2加氢经费托合成直接制烯烃反应。采用SEM、TEM、XRD、H2-TPR、CO2-TPD、XPS、N2吸附-脱附和TG等手段对反应前后的催化剂进行了表征,对K-Fe-Zn-Ti催化剂的组成-结构-性能关系进行了关联研究。结果表明,所制备的催化剂均出现K2.3Fe2.3Ti5.7O16物相,为典型的层状金属氧化物(Layered Metal Oxides,LMO)结构;Zn改性后生成了ZnFe2O4物相,降低了催化剂样品结晶度,增强了表面碱性,促进了CO2表面吸附。在CO2加氢反应中,K-Fe-Zn-Ti系列催化剂均具有较高的烯烃选择性(O/P>6.5),Zn改性促进了C5+的生成,显著提高了C4+线性α-烯烃(linear α-olefins,LAOs)的选择性,C4+烃中LAOs含量由Zn改性前的54.6%提高至75.2%。在所考察的范围内,随Zn/Fe比的增加,烯/烷比(C2-4=/C2-40,O/P)先增加后降低,但对重烃含量以及LAOs选择性影响不明显。K-Fe-Zn-Ti催化剂具有较好的稳定性,经100 h在线反应后,仍保持LMO结构。
摘要:
利用硝酸、草酸和酒石酸溶液对ZSM-5分子筛进行改性,并采用XRD、SEM、NH3-TPD、XRF、27Al MAS NMR、吡啶吸附红外光谱和N2吸附-脱附对ZSM-5分子筛结构、酸量、比表面积及孔体积等物化性质进行表征分析。在反应温度为422℃,甲醇质量空速为4.74 h-1的条件下,考察了ZSM-5分子筛的催化活性。结果表明,采用不同酸改性ZSM-5分子筛,影响了分子筛的比表面积、酸性及孔体积,从而改变了催化剂的催化性能。在甲醇芳构化(MTA)反应中,酸改性后的分子筛表现出良好的催化活性,且草酸改性后的催化剂表现出较高的催化活性及选择性,反应8 h时,芳烃及BTX收率分别达到57.40%和39.40%。
研究论文
摘要:
采用胶体沉积法制备了Pt-FeOx/γ-Al2O3催化剂,通过XRD、TEM、BET、XPS、H2-TPR和FT-IR等技术对催化剂进行了表征,考察了焙烧温度对Pt-FeOx/γ-Al2O3催化剂表面结构及其催化甲醛氧化性能的影响。结果表明,焙烧温度对Pt-FeOx/γ-Al2O3催化剂的氧化还原性能、Pt物种的化学状态以及表面羟基的数量有较大的影响。在室温下,所有Pt-FeOx/γ-Al2O3催化剂均表现出催化氧化活性,其中,200℃焙烧的Pt-FeOx/γ-Al2O3催化剂表现出最好的催化性能,可以将甲醛100%转化为CO2和H2O。较低温度焙烧的Pt-FeOx/γ-Al2O3催化剂表面Pt物种具有较好的价态分布以及更多的界面活性位,如Pt-O-Fe物种,因而在温和条件下对甲醛的催化氧化活性较高。
摘要:
使用溶胶-凝胶法制备了LaCoO3催化剂,采用XRD、BET和XPS等方式对催化剂进行了表征,考察了该催化剂制备过程中煅烧温度、表面活性剂PEG-6000和PEG-20000含量对其H2S选择氧化制硫磺反应催化活性的影响。结果表明,表面活性剂PEG-6000及PEG-20000的添加能明显提高LaCoO3的催化活性。0.02 mol La(NO33+0.02mol Co(NO32溶液中添加0.30 g PEG-20000、煅烧温度为650℃时所制备的LaCoO3催化活性最好;在最佳反应温度260℃下,H2S的转化率达到96.10%,硫选择性为93.77%。
摘要:
构建了CO高压溶解的进气系统,在连续式反应系统中对超临界水条件下CO的转化规律进行了研究;针对生物质超临界水气化中钾盐的多样性,选择KHCO3、K2CO3和KOH等三种钾盐成分,研究了它们在不同工艺条件(450-600℃、23-29 MPa、停留时间3-6 s)下对超临界水中水煤气转化过程的影响。结果表明,在无催化条件下,提高反应温度、延长停留时间均提高了CO的转化率,而压力对其影响在低压下(23-25 MPa)比较大,高压下(25-29 MPa)比较小,水煤气转化的反应动力学方程为k=103.75×exp(-0.66×105/RT)(s-1)。碱性钾盐均能显著提高CO转化率,其催化促进程度从大到小依次为:KHCO3>K2CO3>KOH。添加碱性钾盐时,提高反应温度、延长停留时间均提高CO转化率,而压力的影响比较复杂。碱性盐对水煤气转化反应的催化是通过草酸盐(HC2O4-)和甲酸盐(HCOO-)作为中间产物进行的。
摘要:
以ZnO-TiO2为载体,采用等体积浸渍法制备了不同Ni含量的NiO/ZnO-TiO2汽油脱硫吸附剂。采用X射线衍射(XRD)、压汞、H2程序升温还原(H2-TPR)和H2程序升温脱附(H2-TPD)等手段对吸附剂进行了表征。同时,采用FCC轻汽油为原料,在固定床反应装置中对不同Ni含量的NiO/ZnO-TiO2吸附剂进行脱硫性能评价,以考察Ni含量对该吸附剂脱硫性能的影响。结果表明,Ni含量适量增加对于吸附剂比表面积、内部孔道分布和颗粒强度影响较小,同时能够增加具有脱硫活性的Ni0物种,促进吸附剂脱硫活性。当吸附剂中Ni质量分数达到5.48%后,吸附剂的内部孔道分布改变,吸附剂的比表面积和颗粒强度明显降低,对吸附剂脱硫活性极为不利。当Ni质量分数为4.45%时,吸附剂具有最佳脱硫性能,能够将FCC轻汽油中3×10-4的总硫含量降低至5×10-6以下,并维持脱硫时间达152 h,穿透硫容达11.24%(112.4 mg S/g吸附剂),且脱硫后FCC轻汽油烯烃含量变化较小。
摘要:
基于密度泛函理论的第一性原理和平板模型构造了最稳定的O2/CaO(001)表面,通过优化Se和SeO2在此表面可能的初始吸附结构得到最佳吸附构型,分析了Se原子在O2/CaO(001)表面向SeO2的转化。结果表明,Se原子在O2/CaO(001)表面的稳定吸附构型主要有两种,即O-Se-O和O-O-Se基团,其中,O-O-Se基团的Se终端具有一定化学活性;Se在O2/CaO(001)表面向SeO2转化所需反应能垒小于均相条件下生成SeO2所需反应能垒,表明CaO不仅作为吸附剂,也能促进Se向SeO2的转化;SeO2分子在O2/CaO(001)表面发生化学吸附时,吸附基底的部分价电子转移至SeO2分子轨道中。
摘要:
以纳米碳酸钙为模板,水稻秸秆为碳前驱体,采用共热解法制备了负载氯的分级多孔生物质炭。在模拟烟气条件下,利用固定床实验台架研究了生物质碳材料对烟气中的单质汞(Hg0)的脱除性能。采用扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附(BET)、程序升温脱附(Hg-TPD)以及X射线光电子能谱(XPS)等方法对材料进行表征。结果表明,盐酸浸渍不仅可去除模板产物生成多孔结构,并且有效地将氯负载到材料表面。负载氯的分级多孔炭B1C1-Cl2的比表面积和总孔容分别达到398.1 m2/g和0.4923 cm3/g。在120℃,空速(GHSV)为225000 h-1时,脱汞效率可达95%。多孔结构有利于气体扩散,高比表面积为材料提供了更多的反应位点,微孔-介孔内表面上的C-Cl共价键为脱汞的主要化学吸附活性位点。
摘要:
以吸附式天然气(ANG)吸附剂的工程应用为目的,以0-10 MPa、283.15-303.15 K甲烷在层状石墨烯(GS(3D),比表面积2062 m2/g)和活性炭SAC-01(比表面积1507 m2/g)上的吸附平衡数据作分析。首先,在77.15 K下由氮气吸附表征样品的孔径大小及分布(PSD)和比表面积。其次,选择极低压力下的吸附平衡数据标定亨利定律常数,确定甲烷在两吸附剂上的极限吸附热,并由维里方程和10-4-3势能函数计算甲烷与两吸附剂壁面之间的相互作用势。最后,依据测试的甲烷在吸附剂上的高压吸附平衡数据,比较了Langmuir系列方程的关联数据后的拟合精度,并由绝对吸附量计算了甲烷的等量吸附热。结果表明,甲烷在GS(3D)和活性炭SAC-01上的平均极限吸附热为23.07、20.67 kJ/mol;283.15 K下甲烷分子与GS(3D)和活性炭SAC-01之间的交互作用势εsf/k为67.19、64.23 K,与洛伦混合法则的计算值64.60 K相近;Toth方程关联甲烷在活性炭SAC-01和GS(3D)上吸附平衡数据的拟合累计相对误差为0.25%和2.29%;甲烷在活性炭SAC-01和GS(3D)上的等量吸附热平均值为16.8和18.3 kJ/mol。相对于活性炭SAC-01,比表面积和微孔容积均较高的GS(3D)对甲烷的吸附更具有优势。
摘要:
选用超低沥青质含量的格尔木渣油(沥青质质量分数:0.32%)作为加氢原料,考察反应条件对加氢反应样品组分性质、胶体稳定性参数(CSP)、生焦性能的影响。结果表明,随着加氢反应温度的升高和反应时间的延长,沥青质和饱和分的含量增加,胶质和芳香分的含量减少;胶体稳定性参数降低,生焦率不断增加;胶质与沥青质的缩合度增加,芳碳率fA不断增大;金属与杂原子在加氢过程中不断得到脱除,V比Ni更容易脱除、S比N更容易脱除;催化剂表面形成了类似石墨有序结构的炭基物质,使得催化剂的孔结构参数不断减小。在所研究的反应中,当反应温度和时间分别为420℃和5 h时,催化剂的孔结构损害最为严重,出现了较大的微孔分布。