留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K-CuZrO2催化剂上乙醇制备2-戊酮的研究

魏玲 曾春阳 解红娟 武应全

魏玲, 曾春阳, 解红娟, 武应全. K-CuZrO2催化剂上乙醇制备2-戊酮的研究[J]. 燃料化学学报, 2021, 49(1): 80-87. doi: 10.1016/S1872-5813(21)60008-7
引用本文: 魏玲, 曾春阳, 解红娟, 武应全. K-CuZrO2催化剂上乙醇制备2-戊酮的研究[J]. 燃料化学学报, 2021, 49(1): 80-87. doi: 10.1016/S1872-5813(21)60008-7
WEI Ling, ZENG Chun-yang, XIE Hong-juan, WU Ying-quan. Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 80-87. doi: 10.1016/S1872-5813(21)60008-7
Citation: WEI Ling, ZENG Chun-yang, XIE Hong-juan, WU Ying-quan. Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 80-87. doi: 10.1016/S1872-5813(21)60008-7

K-CuZrO2催化剂上乙醇制备2-戊酮的研究

doi: 10.1016/S1872-5813(21)60008-7
基金项目: 山西省高等学校科技创新项目(2009L1007)资助
详细信息
    通讯作者:

    E-mail: wuyq@sxicc.ac.cn

  • 中图分类号: O643

Study on the formation of 2-pentanone from ethanol over K-CuZrO2 catalysts

Funds: The project was supported by Science and Technology Innovation Project of Shanxi Colleges and Universities (2009L1007)
  • 摘要: 制备了不同Cu含量的K-CuZrO2催化剂。以乙醇缩合制备2-戊酮为探针反应,考察了催化剂的催化性能并对反应机理进行了探索;采用BET、XRD、H2-TPR、CO2-TPD、TEM以及XPS等表征技术对催化剂的体相结构、性质进行了研究。结果表明,当Cu含量为9%时,乙醇转化率达到极大值(99.5%),这是由于此时催化剂中各组分分散较好,CuO-ZrO2之间存在较强的相互作用,促进了CuO的还原,使催化剂表面Cu比表面积最大;2-戊酮选择性达到最大值(35.0%),是由于催化剂表面适合缩合反应的中等强度碱性中心碱性最强。通过对反应中间物种分析,推测了K-CuZrO2催化剂上2-戊酮的形成过程:乙醇首先脱氢形成乙醛,之后两分子乙醛经缩合、分解得到丙酮,丙酮进一步与乙醛反应形成目标产物2-戊酮。
  • 图  1  乙醇缩合制2-戊酮工艺流程示意图

    Figure  1.  Flowchart for ethanol conversion into 2-pentanone

    1: feed pump; 2: N2 cylinder; 3: 10%H2/N2; 4: heating furnace; 5: catalyst bed; 6: ice cold trap; 7: discharge/sampling value; 8: back pressure value; 9: wet flowmeter

    图  2  不同Cu含量K-CuZrO2催化剂的XRD谱图

    Figure  2.  XRD patterns of K-CuZrO2 catalysts with different Cu loadings

    图  3  不同Cu含量K-CuZrO2催化剂的TEM照片

    Figure  3.  TEM images of K-CuZrO2 catalysts with different Cu loadings

    (a): 4%Cu; (b): 7%Cu; (c): 9%Cu; (d): 11%Cu

    图  4  不同Cu含量K-CuZrO2催化剂的H2-TPR谱图

    Figure  4.  H2-TPR profiles of K-CuZrO2 catalysts with different Cu loadings

    图  5  不同Cu含量K-CuZrO2催化剂的CO2-TPD (a) 和NH3-TPD (b) 谱图

    Figure  5.  CO2-TPD (a) and NH3-TPD (b) profiles of K-CuZrO2 catalysts with different Cu loadings

    图  6  不同Cu含量K-CuZrO2的XPS谱图

    Figure  6.  XPS profiles of K-CuZrO2 catalysts with different Cu loadings

    图  7  K-CuZrO2催化剂上2-戊酮形成机理图

    Figure  7.  Simplified reaction mechanism for the 2-pentanone formation over K-CuZrO2 catalysts

    图  8  K-CuZrO2催化剂稳定性测试

    Figure  8.  Stability test of K-CuZrO2 catalyst (9%Cu-KCuZrO2, 0.1 MPa, N2 as carrier gas, GHSV = 2000 h−1, WHSV=1.8 $ {\rm{m}}{{\rm{L}}_{{{\rm{C}}_2}{{\rm{H}}_5}{\rm{OH}}}} $/(mLcat·h))

    表  1  不同Cu含量K-CuZrO2催化剂比表面积和Cu比表面积

    Table  1.   BET surface area and surface metallic area of KCuZrO2 catalysts with different Cu loadings

    Cu w/
    %
    Average dp/
    nm
    Pore volume v/
    (cm3·g−1)
    ABET/
    (m2·g−1)
    SCu/
    (m2·g−1)
    44.30.21927.2
    74.40.220816.2
    95.20.216619.8
    114.40.216616.8
    下载: 导出CSV

    表  2  不同Cu含量K-CuZrO2催化剂的XPS表征

    Table  2.   XPS results for K-CuZrO2 catalysts with different Cu loadings

    Cu w/%Binding energy E/eVRelative surface concentration of catalysts/%
    Cu 2p3/2Zr 3d5/2O 1sCuZrOK
    4933.90181.73529.842.520.673.33.6
    7933.95181.67529.884.618.973.03.5
    9934.06181.58529.705.718.971.53.9
    11933.98181.67529.647.918.070.43.7
    下载: 导出CSV

    表  3  Cu含量对2-戊酮合成性能的影响

    Table  3.   Effect of Cu content on the synthesis of 2-pentanone

    SamplesConv. x/%Distribution of products/%
    acetaldehydeacetone2-pentanoneothers
    494.70.83.619.076.6
    798.02.98.127.761.3
    999.55.87.835.053.6
    1192.73.64.421.568.3
    reaction conditions:350 °C,0.1 MPa, carrier gas: N2, GHSV = 2000 h−1, WHSV = 1.8 $ {\rm{m}}{{\rm{L}}_{{{\rm{C}}_2}{{\rm{H}}_5}{\rm{OH}}}} $/(mLcat·h), reaction time:3 h
    下载: 导出CSV

    表  4  乙醇进样量对2-戊酮合成性能的影响

    Table  4.   Effect of ethanol injection on the synthesis of 2-pentanone

    WHSV/
    $ ({\rm{m}}{{\rm{L}}_{{{\rm{C}}_2}{{\rm{H}}_5}{\rm{OH}}}} \cdot {\rm{mL}}_{{\rm{cat}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}) $
    Conv.
    x/%
    Distribution of products/%
    acetaldehydeacetone2-pentanoneothers
    1.299.83.56.528.476.6
    1.899.53.67.835.053.6
    391.65.41.912.180.6
    reaction conditions:350 °C, 0.1 MPa, carrier gas: N2, GHSV = 2000 h−1, 9%Cu-KCuZrO2, reaction time:3 h
    下载: 导出CSV

    表  5  反应温度对2-戊酮合成性能的影响

    Table  5.   Effect of reaction temperature on the synthesis of 2-pentanone

    t/°CConv. x/%Distribution of products/%
    acetaldehydeacetone2-pentanoneothers
    33090.52.56.528.462.6
    34095.53.08.937.550.6
    35099.53.67.835.053.6
    36099.82.86.230.160.9
    reaction conditions:9%Cu-KCuZrO2, 0.1 MPa, carrier gas: N2, GHSV = 2000 h−1, WHSV = 1.8 $ {\rm{m}}{{\rm{L}}_{{{\rm{C}}_2}{{\rm{H}}_5}{\rm{OH}}}} $/(mLcat·h), reaction time:3 h
    下载: 导出CSV
  • [1] 陈明明, 刘伟, 陈蒙慈, 曾雪云, 陈明. 3,5-二氯-2-戊酮的合成研究[J]. 精细化工中间体,2015,45(1):36−39.

    CHEN Ming-ming, LIU Wei, CHEN Meng-ci, ZHEN Xue-yun, CHEN Ming. Synthesis of 3,5-dichloro-2-pentanone[J]. Fine Chem Intermed,2015,45(1):36−39.
    [2] 任亚宁, 张怡, 门靖. 3,5-二氯-2-戊酮合成方法及在药物制备中的应用[J]. 化工与医药工程,2019,40(2):23−30.

    REN Ya-ning, ZhANG Yi, MEN Jing. Synthesis method of 3,5-dichloro-2-pentanone and its application in preparation of drugs[J]. Chem Pharm Eng,2019,40(2):23−30.
    [3] 孙永军, 李硕, 郭春. 5-氯-2-戊酮的合成工艺改进[J]. 精细化工中间体,2015,45(6):45−47.

    SUN Yong-jun, LI Shuo, GUO Chun. Improvement on the synthesis of 5-chlorine-2-pentanone[J]. Fine Chem Intermed,2015,45(6):45−47.
    [4] 邓广金. 合成脂肪酮的研究[D]. 北京: 北京化工大学, 2001.

    Deng Guang-jin. Study on the synthesis of aliphatic ketones[D]. Beijing: Beijing Univ Chem Technol, 2001.
    [5] WANG Q N, WENG X F, ZHOU B C, LV S P, MIAO S, ZHANG D L, HAN Y, SCOTT S L, SCHÜTH F, LU A H. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catal,2019,9:7204−7216. doi: 10.1021/acscatal.9b02566
    [6] WANG Q N, ZHOU B C, WENG X F, LV S P, SCHÜTH F, LU A H. Hydroxyapatite nanowires rich in [Ca-O-P] sites for ethanol direct coupling showing high C6–12 alcohol yield[J]. Chem Commun,2019,55:10420−10423. doi: 10.1039/C9CC05454E
    [7] HE D P, DING Y J, CHEN W M, LU Y, LUO H Y. One-step synthesis of 2-pentanone from ethanol over K-Pd/MnOx-ZrO2-ZnO catalyst[J]. J Mol Catal A: Chem,2005,226:89−92. doi: 10.1016/j.molcata.2004.08.002
    [8] SUBRAMANIAM S, GUO M F, BATHENA T, GRAY M, ZHANG X, MARTINEZ A, KOVARIK L, GOULAS K A, RAMASAMY K K. Direct catalytic conversion of ethanol to C5+ ketones: Role of PdZn alloy on catalytic activity and stability[J]. Angew Chem Int Ed,2020,59:14550−14557. doi: 10.1002/anie.202005256
    [9] LU T, DU Z, LIU J, CHEN C, XU J. Dehydrogenation of primary aliphatic alcohols to aldehydes over Cu-Ni bimetallic catalysts[J]. Chin J Catal,2014,35:1911−1916. doi: 10.1016/S1872-2067(14)60208-4
    [10] 闫梦霄, 肖勇山, 石先莹, 葛汉青, 李婷, 宋永红, 刘昭铁, 刘忠文. Cu-SiO2催化环己醇气相脱氢制环己酮的研究[J]. 陕西师范大学学报(自然科学版),2019,47(1):109−116.

    YAN Meng-xiao, XIAO Yong-shan, SHI Xian-ying, GE Han-qing, LI Ting, SONG Yong-hong, LIU Zhao-tie, LIU Zhong-wen. The gas-phase dehydrogenation of cyclohexanol to cyclohexanone over Cu-SiO2 catalysts[J]. J Shaanxi Normal Univ (Nat Sci Ed),2019,47(1):109−116.
    [11] 蔺丹丹, 宁艳春, 吴旭, 郭娟娟, 安霞, 谢鲜梅. CuZnAl催化剂中Cu含量对催化环己醇气相脱氢反应性能的影响[J]. 太原理工大学学报,2017,48(1):25−29.

    LIN Dan-dan, NING Yan-chun, WU Xu, GUO Juan-juan, AN Xia, XIE Xian-mei. Effect of Cu content on the catalytic properties of CuZnAl for gas-phase dehydrogenation of cyclohexanol[J]. J Taiyuan Univ Technol,2017,48(1):25−29.
    [12] 姜广申, 胡云峰, 蔡俊, 许鹏, 丛亮, 方菲. 仲丁醇脱氢制甲乙酮的Cu-ZnO 催化剂[J]. 化工进展,2013,32(2):352−358.

    JIANG Guang-shen, HU Yun-feng, CAI Jun, XU Peng, CONG Liang, FANG Fei. Research of Cu-ZnO catalysts for sec-butanol dehydrogenation to methyl ethyl ketone[J]. Chem Ind Eng Progress,2013,32(2):352−358.
    [13] 吕婷婷. 固体碱催化剂K/ZrO2催化合成羟丁基乙烯基醚的研究[D]. 太原: 山西大学, 2018.

    LV Ting-ting. Synthesis of hydroxybutyl vinyl ether catalyzed by solid base catalyst K/ZrO2[D]. Taiyuan: Shanxi University, 2018.
    [14] 何代平, 丁云杰, 尹红梅. 碱金属助剂对MnOx/ZrO2催化合成甲醇及异丁醇反应性能的影响[J]. 催化学报,2003,24(2):111−114. doi: 10.3321/j.issn:0253-9837.2003.02.009

    HE Dai-ping, DING Yun-jie, YIN Hong-mei, WANG Tao, ZHU He-jun. Effect of alkali promoters on catalytic performance of MnOx/ZrO2 for synthesis of methanol and isobutanol from syngas[J]. Chin J Catal,2003,24(2):111−114. doi: 10.3321/j.issn:0253-9837.2003.02.009
    [15] TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y S, VITIDSANTC T, TSUBAKIA N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen,2015,505:141−149. doi: 10.1016/j.apcata.2015.08.002
    [16] TIAN S P, WANG S C, WU Y Q, GAO J W, WANG P, XIE H J, YANG G H, HAN Y Z, TAN Y S. The role of potassium promoter in isobutanol synthesis over Zn-Cr based catalysts[J]. Catal Sci Technol,2016,6:4105−4115. doi: 10.1039/C5CY02030A
    [17] SATO A G, VOLANTI D P, MEIRA D M, DAMYANOVA S, LONGO E, BUENO J M C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. J Catal,2013,307:1−17. doi: 10.1016/j.jcat.2013.06.022
    [18] 谭理, 武应全, 张涛, 解红娟, 陈建刚. 沉淀温度对K-CuLaZrO2催化剂上合成气直接合成异丁醇的影响[J]. 燃料化学学报,2019,47(9):1096−1103.

    TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. J Fuel Chem Technol,2019,47(9):1096−1103.
    [19] WU Y Q, ZHANG J F, ZHANG T, SUN K, WANG L Y, XIE H J, TAN Y S. Effect of potassium on the regulation of C1 intermediates in isobutyl alcohol synthesis from syngas over CuLaZrO2 catalysts[J]. Ind Eng Chem Res,2019,58:9343−9351. doi: 10.1021/acs.iecr.9b01436
    [20] HLEIS D, LABAKI M, LAVERSIN H, COURCOT D, ABOUKAIS A. Comparison of alkali-promoted ZrO2 catalysts towards carbon black oxidation[J]. Colloids Surf A,2008,33(2/3):193−200.
    [21] AGUILA G, VALENZUELA A, GUERRERO S, ARAYA P. WGS activity of a novel Cu-ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method[J]. Catal Commun,2013,39:82−85. doi: 10.1016/j.catcom.2013.05.007
    [22] 吴贵升, 任杰, 孙予罕. 焙烧温度对Cu/ZrO2和Cu-La2O3/ZrO2催化性能的影响[J]. 物理化学学报,1999,15(6):564−567. doi: 10.3866/PKU.WHXB19990616

    WU Gui-sheng, REN Jie, SUN Yu-han. The effect of calcinations temperature on the performance of Cu/ZrO2 and Cu-La2O3/ZrO2[J]. Acta Phys -Chim Sin,1999,15(6):564−567. doi: 10.3866/PKU.WHXB19990616
    [23] 武应全, 解红娟, 冠永利, 谭理, 韩怡卓, 谭猗生. 焙烧温度对K-Cu/Zn/La/ZrO2催化剂异丁醇合成的影响[J]. 燃料化学学报,2013,41(7):868−874. doi: 10.1016/S1872-5813(13)60036-5

    WU Ying-quan, XIE Hong-juan, KOU Yong-li, Tan Li, HAN Yi-zhuo, TAN Yi-sheng. Effect of calcination temperature on performance of K-Cu/Zn/La/ZrO2 for isobutanol synthesis[J]. J Fuel Chem Technol,2013,41(7):868−874. doi: 10.1016/S1872-5813(13)60036-5
    [24] 武应全, 王思晨, 解红娟, 高俊文, 田少鹏, 韩怡卓, 谭猗生. Cu对K-LaZrO2异丁醇合成催化剂的影响[J]. 物理化学学报,2015,31(1):166−172. doi: 10.3866/PKU.WHXB201411241

    WU Ying-quan, WANG Si-chen, XIE Hong-juan, GAO Jun-wen, TIAN Shao-peng, HAN Yi-zhuo, TAN Yi-sheng. Influence of Cu on the K-LaZrO2 catalyst for isobutanol synthesis[J]. Acta Phys-Chim Sin,2015,31(1):166−172. doi: 10.3866/PKU.WHXB201411241
    [25] ORDOMSKY V V, SUSHKEVICH V L, IVANOVA I I. Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica[J]. J Mol Catal A: Chem,2010,333:85−93. doi: 10.1016/j.molcata.2010.10.001
    [26] PRAŠNIKAR A, PAVLIŠIČ A, RUIZ-ZEPEDA F, KOVAČ J, LIKOZAR B. Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol[J]. Ind Eng Chem Res,2019,58:13021−13029. doi: 10.1021/acs.iecr.9b01898
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2020-09-30
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回