留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution

ZHANG Jie ZHAO Yu WU Ai-lian LI Jia WANG Yu-xue

张杰, 赵煜, 武爱莲, 李佳, 王玉雪. Ni(OH)2/Ni/g-C3N4复合材料:一种高效的析氢电催化剂[J]. 燃料化学学报, 2021, 49(2): 198-204. doi: 10.1016/S1872-5813(21)60010-5
引用本文: 张杰, 赵煜, 武爱莲, 李佳, 王玉雪. Ni(OH)2/Ni/g-C3N4复合材料:一种高效的析氢电催化剂[J]. 燃料化学学报, 2021, 49(2): 198-204. doi: 10.1016/S1872-5813(21)60010-5
ZHANG Jie, ZHAO Yu, WU Ai-lian, LI Jia, WANG Yu-xue. Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 198-204. doi: 10.1016/S1872-5813(21)60010-5
Citation: ZHANG Jie, ZHAO Yu, WU Ai-lian, LI Jia, WANG Yu-xue. Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 198-204. doi: 10.1016/S1872-5813(21)60010-5

Ni(OH)2/Ni/g-C3N4复合材料:一种高效的析氢电催化剂

doi: 10.1016/S1872-5813(21)60010-5
详细信息
  • 中图分类号: O614.81

Ni(OH)2/Ni/g-C3N4 composite: An efficient electrocatalyst for hydrogen evolution

Funds: The project was supported by the National Natural Science Foundation of China and Shenhua Group Corp. (U1261103)
More Information
    Corresponding author: E-mail: Zhouyu@tyut.edu.cn
  • 摘要: 高效析氢催化剂的制备仍是目前亟待解决的重要课题。本研究采用液相浸渍原位还原法制备了Ni(OH)2/Ni/g-C3N4复合催化剂,并与碳纸(CP)组合作为微生物电解电池(MEC)的阴极。采用SEM、TEM、XRD、XPS和电化学分析等技术对所制备的催化剂样品的结构性质和析氢电催化性能进行了分析研究。结果表明,Ni(OH)2/Ni/g-C3N4催化剂在100 A/cm2的电流密度驱动下具有优秀的析氢过电位(1881 mV)、较低的电荷转移电阻(10.86 Ω)和较低的塔费尔斜率(44.3 mV/dec),其电化学活性优于纯g-C3N4催化剂和CP,甚至可与Pt催化剂媲美。
  • Figure  1.  SEM images of g-C3N4 (a) and Ni(OH)2/Ni/g-C3N4 catalysts (b); TEM image of Ni(OH)2/Ni/g-C3N4 catalyst (c); XRD patterns of g-C3N4 and Ni(OH)2/Ni/g-C3N4 catalysts (d); survey spectrum and XPS spectrum (inset) of O 1s for the Ni(OH)2/Ni/g-C3N4 catalyst (e); XPS spectra of Ni 2p (f), N 1s (g), and C 1s (h) for the Ni(OH)2/Ni/g-C3N4 catalyst; N2 sorption isotherms of g-C3N4 (a) and Ni(OH)2/Ni/g-C3N4 catalysts (i)

    Figure  2.  LSV curves of Ni(OH)2/Ni/g-C3N4 composite catalysts with different Ni loading ratios (a) and coating amounts (b); Tafel plot (points represent raw data, lines represent fitted data) (c); EIS spectra of bare CP, Ni(OH)2/Ni/g-C3N4 and Pt catalysts (d) (the illustration in Graph (d) is the equivalent circuit used to simulate the HER kinetics process); CP curves (e)

    Figure  3.  Current generation for the cathode electrodes in the MEC (a) and the composition of MEC effluent gas per cycle (b)

    Table  1.   Energy efficiencies and hydrogen production in the MEC with different cathodes

    CathodeRcat/%$ {R_{\rm{H}}}_{_2} $/%$ {Q_{\rm{H}}}_{_2} $/
    (m3-H2·m−3·d−1)
    ηw/%ηw+s/%
    CP24.7779.510.11952.4125.22
    Ni(OH)2/Ni/g-C3N449.62249.340.3725104.9862.18
    Pt37.47134.470.200979.2740.37
    下载: 导出CSV
  • [1] BROCKWAY P E, OWEN A, BRAND-CORREA L I, HARDT L. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nat Energy,2019,4(7):612−621. doi: 10.1038/s41560-019-0425-z
    [2] SHINDELL D, SMITH C J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature,2019,573(7774):408−411. doi: 10.1038/s41586-019-1554-z
    [3] MOMIRLAN M, VEZIROGLU T N. Current status of hydrogen energy[J]. Renewable Sustqinable Energy Rev,2002,6(1-2):141−179. doi: 10.1016/S1364-0321(02)00004-7
    [4] WANG L L, MOHAMMAD A M, LIU P, ZHONG Y L, WANG Y, YANG H G, ZHAO H J. Enhanced Thermochemical H2 Production on Ca-doped lanthanum manganite perovskites through optimizing the dopant level and re-oxidation temperature[J]. Acta Metall Sin(Engllett),2018,31(4):431−439. doi: 10.1007/s40195-018-0715-7
    [5] KADIER A, SIMAYI Y, KALIL M S, ABDESHAHIAN P, HAMID A A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas[J]. Renewable Energy,2014,71:466−472. doi: 10.1016/j.renene.2014.05.052
    [6] LOGAN B E, CALL D, CHENG S, HAMELERS H V M, SLEUTELS T H J A, JEREMIASSE A W, ROZENDAL R A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environ Sci Technol,2008,42(23):8630−8640. doi: 10.1021/es801553z
    [7] DAI H Y, YANG H M, JIAN X, LIU X, LIANG Z H. Performance of Ag2O/Ag electrode as cathodic electron acceptor in microbial fuel cell[J]. Acta Metall Sin-Engl,2017,30(12):1243−1248. doi: 10.1007/s40195-017-0616-1
    [8] CHEN X T, MCCRUM I T, SCHWARZ K A, JANIK M J, KOPER M T M. Co-adsorption of cations as the cause of the apparent ph dependence of hydrogen adsorption on a stepped platinum single-crystal electrode[J]. Angew Chem Int Ed,2017,129(47):15025−15029.
    [9] PYUN S I, YANG T H, KIM C S. Investigation of the hydrogen evolution reaction at a 10 wt% palladium-dispersed carbon electrode using electrochemical impedance spectroscopy[J]. J Appl Electrochem,1996,26(9):953−958.
    [10] WANG L X, LI Y, YIN X C, WANG Y Z, SONG A L, MA Z P, QIN X J, SHAO G J. Coral-like structured Ni/C3N4 composite coating: an original catalyst for hydrogen evolution reaction in alkaline solution[J]. ACS Sust Chem Eng,2017,5(9):7993−8003. doi: 10.1021/acssuschemeng.7b01576
    [11] LIU X, LIANG J T, SONG X L, YANG H M, LI X J, DAI H Y, SONG Y L, LIU Y, HUA J, PAN X R, OUYANG X, LIANG Z H. Enhanced water dissociation performance of graphitic-C3N4 assembled with ZnCr-layered double hydroxide[J]. Chem Eng J,2018,337:560−566. doi: 10.1016/j.cej.2017.12.138
    [12] BI L L, XU D D, ZHANG L J, LIN Y H, WANG D J, XIE T F. Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending[J]. Phys Chem Chem Phys,2015,17(44):29899−29905. doi: 10.1039/C5CP05158D
    [13] WU S C, XU B J, LONG Y F, LUO X, ZHANG L. Oxygen-functionalized g-C3N4 layers anchored with Ni(OH)2 nanoparticles assembled onto Ni foam as binder-free outstanding electrode for supercapacitors[J]. Synth Met,2020,270:116607.
    [14] CAO R Y, YANG H C, ZHANG S W, XU X J. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution[J]. Appl Catal B: Environ,2019,258:117997.
    [15] ZHOU H, ZHANG J, ZHANG J, YAN X F, SHEN X P, YUAN A H. High-capacity room-temperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst[J]. Int J Hydrogen Energ,2015,40(36):12275−12285. doi: 10.1016/j.ijhydene.2015.05.199
    [16] DAI H Y, YANG H M, LIU X, JIAN X, LIANG Z H. Electricity production in microbial fuel cell subjected to different operational modes[J]. Acta Metall Sin(Engllett),2016,29(5):483−490. doi: 10.1007/s40195-016-0412-3
    [17] CALL D, LOGAN B E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane[J]. Environ Sci Technol,2008,42(9):3401−3406. doi: 10.1021/es8001822
    [18] LI F J, LIU W F, SUN Y, DING W J, CHENG S A. Enhancing hydrogen production with Ni–P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells[J]. Int J Hydrogen Energy,2016,42(6):3641−646.
    [19] QIU Y, XIN L, JIA F, XIE J, LI W Z. Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction[J]. Langmuir,2016,32(48):12569−12578. doi: 10.1021/acs.langmuir.6b02498
    [20] FUA Y J, LIU C A, ZHU C, WANG H B, DOU Y J, SHI W L, SHAO M W, HUANG H, LIU Y, KANG Z H. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting[J]. Inorg Chem Front,2018,5(7):1646−1652. doi: 10.1039/C8QI00292D
    [21] TZVETKOV G, TSVETKOV M, SPASSOV T. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance[J]. Superlattice Microst,2018,119:122−133. doi: 10.1016/j.spmi.2018.04.048
    [22] LI Z W, JIANG G D, ZHANG Z H, WU Y, HAN Y H. Phosphorus-doped g-C3N4 nanosheets coated with square flake-like TiO2: Synthesis, characterization and photocatalytic performance in visible light[J]. J Mol Catal A: Chem,2016,425:340−348. doi: 10.1016/j.molcata.2016.10.020
    [23] MA T J, ZHANG M M, LIU H, WANG Y, PAN D H. Synthesis of novel three-dimensional mesoporous nitrogen doped graphene supported Pt nanoparticles as superior catalyst for hydrogen generation[J]. Int J Hydrogen Energy,2018,43(42):19327−19335. doi: 10.1016/j.ijhydene.2018.09.021
    [24] LASIA A. Mechanism and kinetics of the hydrogen evolution reaction[J]. Int J Hydrogen Energy,2019,44(36):19484−19518. doi: 10.1016/j.ijhydene.2019.05.183
    [25] LEDENDECKER M, KRICK CALDERÓN S, PAPP C, STEINRÜCK H P, ANTONIETTI M, SHALOM M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting[J]. Angew Chem Int Ed,2015,54(42):12361−12365. doi: 10.1002/anie.201502438
    [26] SHIBLI S M A, AMEEN SHA M, ANISHA B L, PONNAMMA D, SADASIVUNI K K. Effect of phosphorus on controlling and enhancing electrocatalytic performance of Ni-P-TiO2-MnO2 coatings[J]. J Electroanal Chem,2018,826:104−116. doi: 10.1016/j.jelechem.2018.08.021
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-11-03
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回