留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹凸棒石(PG)负载MnOx催化剂脱除气态Hg0的研究

王钧伟 徐灿 秦伟 张建利 张先龙 董彦杰 崔晓峰

王钧伟, 徐灿, 秦伟, 张建利, 张先龙, 董彦杰, 崔晓峰. 凹凸棒石(PG)负载MnOx催化剂脱除气态Hg0的研究[J]. 燃料化学学报, 2020, 48(12): 1442-1451.
引用本文: 王钧伟, 徐灿, 秦伟, 张建利, 张先龙, 董彦杰, 崔晓峰. 凹凸棒石(PG)负载MnOx催化剂脱除气态Hg0的研究[J]. 燃料化学学报, 2020, 48(12): 1442-1451.
WANG Jun-wei, XU Can, QIN Wei, ZHANG Jian-li, ZHANG Xian-long, DONG Yan-jie, CUI Xiao-feng. Hg0 removal by palygorskite (PG) supported MnOx catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1442-1451.
Citation: WANG Jun-wei, XU Can, QIN Wei, ZHANG Jian-li, ZHANG Xian-long, DONG Yan-jie, CUI Xiao-feng. Hg0 removal by palygorskite (PG) supported MnOx catalyst[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1442-1451.

凹凸棒石(PG)负载MnOx催化剂脱除气态Hg0的研究

基金项目: 

国家自然科学基金 21203003

国家自然科学基金 51404014

安徽省自然科学基金面上项目 1708085MB49

安徽省高校优秀青年人才支持计划重点项目 gxyqZD2017062

省部共建煤炭高效利用与绿色化工国家重点实验室开放课题 2020-KF-28

详细信息
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 中图分类号: 0643.3

Hg0 removal by palygorskite (PG) supported MnOx catalyst

Funds: 

the National Natural Science Foundation of China 21203003

the National Natural Science Foundation of China 51404014

the Anhui Provincial Natural Science Foundation 1708085MB49

Key Project of Anhui Provincial Outstanding Young Scholars in Colleges and Universities gxyqZD2017062

Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering 2020-KF-28

More Information
  • 摘要: 利用凹凸棒石(PG)负载Mn氧化物制备MnOx/PG催化剂并用于脱除模拟烟气中的Hg0,并采用比表面积分析(BET)、X射线衍射(XRD)、X射线光电子能谱(XPS)等技术对催化剂进行了分析表征。结果表明,MnOx和凹凸棒石的共同作用明显增强了对Hg0脱除性能,MnOx负载量为8%的MnOx/PG催化剂脱除Hg0的活性最高,在400 min内反应温度为210 ℃、空速为6000 h-1、汞质量浓度为80 μg/m3的条件下Hg0的脱除效率可达95%以上。O2对MnOx/PG催化剂脱除Hg0具有促进作用,而SO2和H2O具有抑制作用,但气氛中有O2存在时可明显减弱SO2的抑制作用。X射线衍射(XRD)、X射线光电子能谱分析(XPS)和程序升温脱附实验(TPD)等结果表明,活性组分MnOx在载体PG上分散良好,Hg0在MnOx/PG催化剂上的脱除过程包含了吸附、氧化、反应等步骤,生成了HgO和HgSO4并吸附在催化剂上。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  固定床脱汞实验装置示意图

    Figure  1.  Fixed bed system of mercury adsorption test

    图  2  MnOx负载量对MnOx/PG脱除Hg0的影响

    Figure  2.  Effect of MnOx loading on Hg0 removal by MnOx/PG

    图  3  PG和MnOx/PG催化剂的XRD谱图

    Figure  3.  XRD of PG and MnOx/PG catalysts a: PG; b: Mn3/PG; c: Mn5/PG; d: Mn8/PG; e: Mn10/PG

    图  4  温度对MnOx/PG催化剂脱除Hg0的影响

    Figure  4.  Effect of temperature on Hg0 removal by MnOx/PG

    图  5  烟气成分对MnOx/PG催化剂脱除Hg0的影响

    Figure  5.  Effect of flue gas components on Hg0 removal by MnOx/PG

    图  6  O2体积分数对MnOx/PG脱除Hg0的影响

    Figure  6.  Effect of O2 on Hg0 removal by MnOx/PG

    图  7  O2暂态响应实验

    Figure  7.  O2 transient response experiment for Hg0 removal over MnOx/PG

    图  8  SO2体积分数对MnOx/PG脱除Hg0的影响

    Figure  8.  Effect of SO2 on Hg0 removal by MnOx/PG

    图  9  SO2暂态响应实验

    Figure  9.  SO2 transient response experiment for Hg0 removal over MnOx/PG

    图  10  脱除Hg0前(a)后(b)MnOx/PG催化剂O 1s的XPS谱图

    Figure  10.  O 1s XPS profiles of the fresh MnOx/PG (a) and used MnOx/PG (b)

    图  11  脱除Hg0前(a)后(b)MnOx/PG催化剂Mn 2p的XPS谱图

    Figure  11.  Mn 2p XPS profiles of the fresh MnOx/PG(a)and used MnOx/PG(b)

    图  12  新鲜MnOx/PG和吸附Hg0后MnOx/PG的TPD谱图

    Figure  12.  TPD profiles of the fresh MnOx/PG and used MnOx/PG

    图  13  Hg0在MnOx/PG催化剂上的脱除过程

    Figure  13.  Hg0 removal process on MnOx/PG

    表  1  PG和MnOx/PG的比表面积和孔结构

    Table  1.   Properties of PG and MnOx/PG

    Sample ABET /(m2·g-1) vt/(cm3·g-1) dave/nm
    PG 135.85 0.553 16.93
    1%MnOx/PG 137.79 0.526 16.92
    3%MnOx/PG 133.82 0.519 16.91
    5%MnOx/PG 130.04 0.512 16.90
    8%MnOx/PG 133.21 0.499 17.10
    10%MnOx/PG 127.73 0.492 17.10
    下载: 导出CSV

    表  2  MnOx/PG催化剂表面的原子浓度

    Table  2.   Surface atomic salinity of MnOx/PG

    MnOx/PG Oα/% Oβ/% Oγ/% Mn2+/% Mn3+/% Mn4+/%
    Fresh 18.8 53.4 27.8 - 46.2 53.8
    Used 8.8 44.7 46.5 20.9 36.2 42.9
    下载: 导出CSV
  • [1] PIRRONE N, CINNIRELLA S, FENG X, FINKELMAN R B, FRIEDLI H R, LEANER J, MASON R, MUKHERJEE A B, STRACHER G B, STREETS D G, TELMER K. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmos Chem Phys, 2010, 10(201): 5951-5964.
    [2] DRANGA B A, LAZAR L, KOESER H. Oxidation catalysts for elemental mercury in flue gases-A review[J]. Catal, 2012, 2(1): 139-170.
    [3] CHENG H Y, ZHANG W W, WANG Y C, LIU J H. Graphene oxide as a stationary phase for speciation of inorganic and organic species of mercury, arsenic and selenium using HPLC with ICP-MS detection[J]. Microchim Acta, 2018, 185(9): 1-8.
    [4] ZHU C Y, TIAN H Z, CHENG K, LIU K Y, WANG K, HUA S B, GAO J J, ZHOU J R. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China[J]. J Clean Prod, 2016, 114(15): 343-351.
    [5] ZHAO Y, ZHONG H, ZHANG J, NIELSEN C P. Evaluating the effects of China's pollution controlson on inter-annual trends and uncertainties of atmospheric mercury emissions[J]. Atmos Chem Phys, 2015, 15(8): 4317-4337.
    [6] BENJARAM M, NAGA D, THALLADA V K, BHARGAVA S K. Abatement of gas-phase mercury-recent Developments[J]. Catal Rev Sci Eng, 2012, 54(3): 344-398.
    [7] HUANG T F, DUAN Y F, LUO Z K, ZHAO S L, GENG X Z, XU Y F, HUANG Y J, WEI H Q, REN S J, WANG H, GU X B. Influence of flue gas conditions on mercury removal by activated carbon injection in a pilot-scale circulating fluidized bed combustion system[J]. Ind Eng Chem Res, 2019, 58(34): 15553-15561.
    [8] LIU H, CHANG L, LIU W J, XIONG Z, ZHAO Y C, ZHANG J Y. Advances in mercury removal from coal-fired flue gas by mineral adsorbents[J]. Chem Eng J, 2020, 379:122263.
    [9] DING F, ZHAO Y C, MI L L, LI H L, LI Y, ZHANG J Y. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents[J]. Ind Eng Chem Res, 2012, 51(7): 3039-3047.
    [10] 邢帅, 姜宏, 熊春荣, 马艳平.椰壳活性炭氧化后负载硅基复合氧化物低温脱硝催化剂的研究[J].分子催化, 2016, 30(2): 140-150.

    XING Shuai, JIANG Hong, XIONG Chun-rong, MA Yan-ping. Research of silicon-based composite oxides supported on oxided cocount shell active carbon as denitration catalyst at low temperature[J]. J Mol Catal, 2016, 30(2): 140-150.
    [11] 张恒建.柱状凹凸棒石-活性炭负载锰氧化物低温SCR脱硝催化剂性能研究[D].合肥: 合肥工业大学, 2014.

    ZHANG Heng-jian. Investigation of cylindrical palygorskite-activated carbon supported manganese oxides catalysts for low-temperature selective catalytic reduction(SCR)of NO by NH3[D]. Hefei: Hefei University of Technology, 2014.
    [12] 张先龙, 解城华, 郭勇, 吴雪平, 王钧伟.蜂窝式MnOx/PG-CC催化剂的制备及低温选择性催化还原法脱硝性能[J].环境化学, 2015, 4: 614-626.

    ZhANG Xian-long, XIE Cheng-hua, GUO Yong, WU Xue-ping, WANG Jun-wei. Preparation and performance of honeycomb MnOx/PG-CC catalysts for low temperature NO removal by SCR[J]. Environ Chem, 2015, 4: 614-626.
    [13] 刘芳芳, 张军营, 赵永椿, 郑楚光.金属氧化物改性凹凸棒石脱除烟气中的单质汞[J].燃烧科学与技术, 2014, 20(6): 553-557.

    LIU Fang-fang, ZHANG Jun-ying, ZHAO Yong-chun, ZHENG Chu-guang. Mercury Removal from Flue Gas by Metal Oxide-Loaded Attapulgite Mineral Sorbent[J]. Combust Sci Technol, 2014, 20(6): 553-557.
    [14] LIU H, YANG Y P, TIAN C, ZHAO Y C, ZHANG J Y. Mercury removal from coal combustion flue gas by modified palygorskite adsorbents[J]. Appl Clay Sci, 2017, 147: 36-43.
    [15] CIMINO S, MANGONE C, SCALA F. Combined mercury removal and low-temperature NH3-SCR OF NO with MnOx/TiO2 sorbents/catalysts[J]. Combust Sci Technol, 2018, 190(8):1-12.
    [16] GAO L, LI C T, LI S H, ZHANG W, DU X Y, HUANG L, ZHU Y C, ZHAI Y B, ZENG G M. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal[J]. Chem Eng J, 2019, 371: 781-795.
    [17] 李扬, 刘冰, 杨赫, 杨大伟, 胡浩权. MnOx-TiO2吸附剂对燃煤烟气中汞的脱除[J].燃料化学学报, 2020, 48(5): 513-524.

    LI Yang, LIU Bing, YANG He, YANG Da-wei, HU Hao-quan. Removal of elemental mercury (Hg0) from simulated flue gas over MnOx -TiO2 sorbents[J]. J Fuel Chem Technol, 2020, 48(5): 513-524.
    [18] 郭会宾, 刘海刚, 唐宏学. WO3-MnOx/TiO2-ZrO2催化剂脱汞性能研究[J].环境污染与防治, 2019, 41(6): 694-698.

    GUO Hui-bin, LIU Hai-gang, TANG Hong-xue. Study on mercury removal performance of WO3-MnOx/TiO2-ZrO2 catalysts[J]. Environ pollut control, 2019, 41(6): 694-698.
    [19] 白国梁, 陶海兵, 蔡思敏, 秦伟, 毛德棋, 王钧伟, 董彦杰, 张先龙.凹凸棒石(PG)负载V2O5催化剂脱除气态Hg0的研究[J].环境科学学报, 2019, 39(7): 2369-2376.

    BAI Guo-liang, TAO Hai-bing, CAI Si-min, QIN Wei, MAO De-qi, WANG Jun-wei, DONG Yan-jie, ZHANG Xian-long. Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J]. Acta Sci Circumst, 2019, 39(7): 2369-2376.
    [20] DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg~0 removal in coal-fired flue gas[J]. Energy Fuels, 2019, 33: 7522-7533.
    [21] CUI H, QIAN Y, LI Q, ZHANG W, ZHAI J P. Adsorption of aqueous Hg(Ⅱ) by a polyaniline/attapulgite composite[J]. Chem Eng J, 2012, 211-212: 216-223.
    [22] ZHOU Z J, LIU X W, XU J, CAO X K, ZHU X B. Elemental mercury removal over a novel starch-modified MnOx/bentonite composite[J]. Fuel Process Technol, 2019, 187: 16-20.
    [23] LI H L, YU C L, LI Y, WU, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J], Appl Catal B: Environ, 2012, 12(111-112): 381-388.
    [24] 左海清, 徐东耀, 但海均, 刘向辉, 杨永利, 刘伟, 马妍.凹凸棒石烟气脱汞吸附剂的研究进展[J].化工进展, 2017, 36(10): 3533-3539.

    ZUO Hai-qing, XU Dong-yao, DAN Hai-jun, LIU Xiang-hui, YANG Yong-li, LIU Wei, MA Yan. Research progress in attapulgite absorbents for mercury removal from flue gases[J]. Chem Ind/Eng Prog, 2017, 36(10): 3533-3539.
    [25] YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011. 101(3/4): 698-708.
    [26] 王钧伟, 陈培, 刘瑞卿, 秦伟, 杜荣斌, 刘涛.粉煤灰负载Fe2O3脱除气态单质汞的试验研究[J].环境科学学报, 2014, 34(12): 3152-3157.

    WANG Jun-wei, CHEN Pei. LIU Rui-qing, QIN Wei, DU Rong-bin, LIU Tao. Hg0 removal by a fly ash-supported Fe2O3 catalyst[J]. Acta Sci Circumst, 2014, 34(12): 3152-3157.
    [27] 黄张根, 朱珍平, 刘振宇.水对V2O5/AC催化剂低温还原NO的影响[J].催化学报, 2001, 22(6): 532-536.

    HUANG Zhang-gen, ZHU Zhen-ping, LIU Zhen-yu. Effect of water on V2O5/AC catalyst for NO reduction by NH3 at lower temperature[J]. Chin J Catal, 2001, 22(6): 532-536.
    [28] 高磊.改性活性焦(炭)低温协同脱除燃煤烟气NO和Hg0的实验和理论研究[D].长沙: 湖南大学, 2019.

    GAO Lei. An experimental and theoretical rescarch on simultaneous removal of NO and Hg0 from simulated coal-fired flue gas over modified activated coke(carbon)at low temperature[D]. Changsha: Hunan University 2019.
    [29] WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal- fired flue gas[J]. Chem Eng J, 2011, 170(2/3): 512-517.
    [30] 谢亚婷. Mn、Ce改性γ-Al2O3催化剂脱除燃煤烟气汞及其抗硫特性实验研究[D].武汉: 武汉大学, 2018.

    XIE Ya-ting. Experimental study on removal of mercury from coal-fired flue gas and its sulfur tolerance characteristic by Mn, Ce modified γ-Al2O3 catalyst[D]. Wuhan: Wuhan University 2018.
    [31] 周梦丽.锰铁矿石低温SCR脱硝及联合脱汞的实验研究[D].武汉: 华中科技大学, 2018.

    ZHOU Meng-li. The experimental study on simultaneous removal of NO and mercury over ferromanganese ore at low temperature[D]. Wuhan: Huazhong University of Science and Technologt, 2018.
    [32] 杨建平, 赵永椿, 张军营, 郑楚光.燃煤电站飞灰对汞的氧化和捕获的研究进展[J].动力工程学报, 2014, 34(5): 337-345.

    YANG Jian-ping, ZHAO Yong-chun, ZHANG Jun-ying, ZHENG Chu-guang. Research process on mercury oxidation and capture with fly ash of coal-fired power plant[J]. J Chin Society Power Eng, 2014, 34(5): 337-345.
    [33] LIU M, LI C T, ZENG Q, DU X Y, GAO L, LI S H, ZHAI Y B. Study on removal of elemental mercury over MoO3-CeO2/cylindrical activated coke in the presence of SO2 by Hg-temperature-programmed desorption[J]. Chem Eng J, 2019, 371: 666-678.
    [34] 陈力, 刘盛余, 吕维阳.锰负载对磁性铁氧化物吸附Hg0的影响[J].环境工程, 2019, 37(9): 131-137.

    CHEN Li, LIU Sheng-yu, LV Wei-yang. Effect of manganese loading on zero valent mercury adsorption on magnetic iron oxides[J]. Environ Eng, 2019, 37(9): 131-137.
    [35] 安东海, 韩晓林, 程星星, 周滨选, 郑瑛, 董勇.不同烟气组分对粉状活性焦吸附汞的影响机理[J].化工学报, 2019, 70(4): 1575-1582.

    AN Dong-hai, HAN Xiao-lin, CHENG Xing-xing, ZHOU Bin-xuan, ZHENG Ying, DONG Yong. Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke[J]. CIESC J, 2019, 70(4): 1575-1582.
    [36] ZHU L, LIU C L, WEN X D, LI Y W, JIAO H J. Molecular or dissociative adsorption of water on clean and oxygen pre-covered Ni (111) surfaces[J]. Catal Sci Technol, 2019, 9(1): 199-212.
    [37] HUANG Z F, SONG J J, DU Y H, XI S B, DOU S, JEAN M V N, WANG C, XU Z C, WANG X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nat Energy, 2019, 4: 329-338.
    [38] ZHAO L, WU Y W, HAN J, LU Q, YANG Y P, ZHANG L B. Mechanism of mercury adsorption and oxidation by oxygen over the CeO2 (111) surface: A DFT study[J]. Mater, 2018, 11(4): 485.
    [39] WANG Z, LIU J, YANG Y J, MIAO S, SHEN F H. Effect mechanism of H2S on elemental mercury removal using MnO2 sorbent during coal gasification[J]. Energy Fuels, 2017, 32(4): 4453-4460.
    [40] LU X N, SONG C Y, JIA S H, TONG Z S, TANG X L, TENG Y X. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene[J]. Chem Eng J, 2015, 260: 776-784.
    [41] YAO T, DUAN Y F, BISSON T M, GUPTA R, PUDASAINEE D, ZHU C, XU Z H. Inherent thermal regeneration performance of different MnO2 crystallographic structures for mercury removal[J]. J Hazard Mater, 2019, 374(15): 267-275.
    [42] RUMAYOR M, DÍAZ-SOMOANO M, LÓPEZ-ANTÓN M A, OCHOA-GONZÁLEZ R, MARTÍNEZ-TARAZONA M R. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015, 148: 98-103.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-09-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回