留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NH3和SO3对硫酸氢铵和硫酸铵生成的影响

杨建国 杨炜樱 郑方栋 赵虹

杨建国, 杨炜樱, 郑方栋, 赵虹. NH3和SO3对硫酸氢铵和硫酸铵生成的影响[J]. 燃料化学学报, 2018, 46(1): 92-98.
引用本文: 杨建国, 杨炜樱, 郑方栋, 赵虹. NH3和SO3对硫酸氢铵和硫酸铵生成的影响[J]. 燃料化学学报, 2018, 46(1): 92-98.
YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, ZHAO Hong. Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 92-98.
Citation: YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, ZHAO Hong. Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 92-98.

NH3和SO3对硫酸氢铵和硫酸铵生成的影响

基金项目: 

浙江省自然科学基金 LY15E060002

详细信息
  • 中图分类号: X511

Effects of NH3 and SO3 on the generation of ammonium bisulfate and ammonium sulfate

Funds: 

the Zhejiang Provincial Natural Science Foundation of China LY15E060002

More Information
  • 摘要: 通过建立具有更精确的SO3组分的实验室模拟烟气系统,同步研究了反应物浓度对硫酸氢铵和硫酸铵生成率和生成进度(生成速率)的影响。在实验浓度范围内,硫酸氢铵的开始生成温度为230-270℃,峰值温度为180-240℃,硫酸铵开始生成温度及峰值温度总体上比硫酸氢铵低40℃左右。硫酸氢铵的生成率明显高于硫酸铵,根据NH3和SO3浓度与物质的量比不同,烟温到120℃时,硫酸氢铵的生成率为64%-90%,硫酸铵的生成率为6%-15%,硫酸氢铵的生成率为硫酸铵的6-10倍。反应物浓度的增加会促进硫酸氢铵和硫酸铵的生成,且SO3较NH3更有利于硫酸氢铵的生成。硫酸氢铵和硫酸铵生成份额随温度的变化呈单峰状,且随着反应物浓度的增加,其峰值所在的温度区间逐渐升高。
  • 图  1  烟气模拟装置示意图

    Figure  1  Schematic of flue gas simulator

    图  2  SO3浓度校验装置示意图

    Figure  2  Calibration device for SO3 concentration

    图  3  SO3浓度校验结果

    Figure  3  Calibration result of SO3 concentration

    图  4  反应器与反应产物捕集器示意图

    Figure  4  Reactor and catcher system

    图  5  不同物质的量比反应物浓度变化对硫酸氢铵生成率的影响

    Figure  5  Influence of reactant concentration on the formation of ammonium bisulfate with temperature under different mole ratios

    图  6  不同物质的量比反应物浓度变化对硫酸铵生成率的影响

    Figure  6  Influence of reactant concentration on the formation of ammonium sulfate with temperature under different mole ratios

    图  7  不同物质的量比反应物浓度对硫酸氢铵生成进度的影响

    Figure  7  Influence of reactant concentration on the formation of ammonium bisulfate with temperature under different NH3/SO3 molar ratios

    图  8  不同物质的量比反应物浓度对硫酸铵生成进度的影响

    Figure  8  Influence of reactant concentration on the formation of ammonium sulfate with temperature under different NH3/SO3 molar ratios

  • [1] GB13223-2011, 火电厂大气污染物排放标准[S].

    GB13223-2011, Emission standard of air pollutants for thermal power plants[S].
    [2] 中华人民共和国国家发展和改革委员会. 煤电节能减排升级改造行动计划[EB/OL]. http://bgt.ndrc.gov.cn/zcfb/201409/t20140919_626242.html, 2014-09-12.
    [3] 陈进生.电厂烟气脱硝技术——选择性催化还原法[M].北京:中国电力出版社, 2008.

    CHEN Jin-sheng. Flue Gas Denitrification Technology in Power Plant-Selective Catalytic Reduction[M]. Beijing:China Electric Power Press, 2008.
    [4] 李俊华, 杨恂, 常化振.烟气催化脱硝关键技术研发及应用[M].北京:科学出版社, 2015.

    LI Jun-hua, YANG Xun, CHANG Hua-zhen. Development and Application of Key Technologies for Catalytic Denitrification of Flue Gas[M]. Beijing:Science Press, 2015.
    [5] 马双忱, 金鑫, 孙云雪, 崔基伟. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J].热力发电, 2010, 39(8):12-17. http://www.doc88.com/p-61063976570.html

    MA Shuang-chen, JIN Xin, SUN Yun-xue, CUI Ji-wei. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification progress and control thereof[J]. Therm Power Gener, 2010, 39(8):12-17. http://www.doc88.com/p-61063976570.html
    [6] WILBURN R T, WRIGHT T L. SCR ammonia slip distribution in coal plant effluents and dependence upon SO3[J]. Powerplant Chem, 2004, 6(5):295-304.
    [7] 蔡明坤.装有脱硝系统锅炉用回转式预热器设计存在问题和对策[J].锅炉技术, 2005, 36(4):8-12, 77. http://www.cqvip.com/QK/97761X/200503/20287859.html

    CAI Ming-kun. The problem and solution in air preheater design for boilers with de NOx equipments[J]. Bolier Technol, 2005, 36(4):8-12, 77. http://www.cqvip.com/QK/97761X/200503/20287859.html
    [8] FARTHING W E, WALSH P M. Identification of (and responses to) potential effects of SCR and wet scrubbers on submicron particulate emissions and plum characteristics[R]. Alabama: Southern Research Institute, 2004.
    [9] 梁登科. 脱硝过程伴生硫酸氢氨对于烟气灰颗粒性质影响的实验研究[D]. 济南: 山东大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10422-1014309904.htm

    LIANG Deng-ke. Experimental research on the effects to flue ash particles characteristics of NH4HSO4 generating during the denitrification process[D]. Jinan: Shandong University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10422-1014309904.htm
    [10] 陆建伟, 曹志勇, 李辉.燃煤机组烟气脱硝设施建设和运行情况及存在问题浅析[J].电力科技与环保, 2013, 29(5):4-7. http://www.cqvip.com/QK/94798A/201305/47446839.html

    LU Jian-wei, CAO Zhi-yong, LI Hui. Problems analysis in construction and operation of coal-fired units flue gas denitrification facilities[J]. Electric Power Technol and Environ Prot, 2013, 29(5):4-7. http://www.cqvip.com/QK/94798A/201305/47446839.html
    [11] 罗闽, 赵伶玲, 李偲宇.空气预热器硫酸氢铵积灰的数值研究[J].动力工程学报, 2016, 36(11):883-888. doi: 10.3969/j.issn.1674-7607.2016.11.005

    LUO Min, ZHAO Ling-ling, LI Si-yu. Numerical simulation of ash deposition with adhesion of NH4HSO4 in an air preheater[J]. Chin J Power Eng, 2016, 36(11):883-888. doi: 10.3969/j.issn.1674-7607.2016.11.005
    [12] Schreifels J J, WANG S X, HAO J M. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers[J]. Front Energy, 2012, 06(1):98-105. doi: 10.1007/s11708-012-0171-4
    [13] 赵宗让.电厂锅炉SCR烟气脱硝系统设计优化[J].中国电力, 2005, 38(11):69-74. doi: 10.3969/j.issn.1004-9649.2005.11.017

    ZHAO Zong-rang. Design optimization of SCR system for coal-fired boilers[J]. Electric Power, 2005, 38(11):69-74. doi: 10.3969/j.issn.1004-9649.2005.11.017
    [14] ZHAO Y, HU J, HUA L. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res, 2011, 50(21):11863-11871. doi: 10.1021/ie201045w
    [15] LEI Z G, WEN C P, CHEN B H. Optimization of internals for selective catalytic reduction (SCR) for no removal[J]. Environ Sci Technol, 2011, 45(8):3437-3444. doi: 10.1021/es104156j
    [16] 朱崇兵, 金保升, 李锋, 翟俊霞. SO2氧化对SCR法烟气脱硝的影响[J].锅炉技术, 2008, 39(3):68-72. http://www.oalib.com/paper/4967411

    ZHU Chong-bing, JIN Bao-sheng, LI Feng, ZHAI Jun-xia. Effect of SO2 oxidation on SCR-DeNOx[J]. Bolier Technol, 2008, 39(3):68-72. http://www.oalib.com/paper/4967411
    [17] 王杭州. SCR对脱硝效率及SO2转化影响分析[J].电力科学与工程, 2008, 24(5):17-21. http://www.oalib.com/paper/4968611

    WANG Hang-zhou. The influence of SCR on denitrification efficiency and SO2 conversion[J]. Electric Power Sci Eng, 2008, 24(5):17-21. http://www.oalib.com/paper/4968611
    [18] BURKE J M, JOHNSON K L. Ammonium sulfate and bisulfate formation in air preheaters[J]. Bmj British Med J, 1982, 329(7463):446. https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryID=37706
    [19] Ando J. NOx abatement for stationary sources in Japan[R]. USEPA, 1976.
    [20] CHOTHANI C, MOREY R. Ammonium bisulfate (ABS) measurement for SCR NOx control and air heater protection[C]//Baltimore, MD: 2008.
    [21] MENASHA J, DUNN-RANKIN D, MUZIO L, STALLINGS J. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel. 2011, 90(7):2445-2453. doi: 10.1016/j.fuel.2011.03.006
    [22] MATSUDA S, KAMO T, KATO A. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia[J]. Ind Eng Chem Prod Res Dev, 1982, 21(1):1888-1900. doi: 10.1021/i300005a009
    [23] Sarunac N. Improving the performance of boiler auxiliaries[J]. Coal Power, 2011, (2):1-35. https://www.researchgate.net/profile/Rajashekar_Mandi3/publication/317317068_REDUCTION_OF_AUXILIARY_POWER_THROUGH_IMPROVING_THE_PERFORMANCE_OF_AUXILIARY_EQUIPMENTS/links/593196e5aca272fc55feae34/REDUCTION-OF-AUXILIARY-POWER-THROUGH-IMPROVING-THE-PERFORMANCE-OF-AUXILIARY-EQUIPMENTS.pdf
    [24] 马双忱, 邓悦, 吴文龙, 张立男, 马京香, 张小霓. SCR脱硝过程中硫酸氢铵形成特性实验研究[J].动力工程学报. 2016, 36(2):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201602010.htm

    MA Shuang-chen, DENG Yue, WU Wen-long, ZHANG Li-nan, MA Jing-xiang, ZHANG Xiao-ni. Experimental research on ABS formation characteristics in SCR denitrification process[J]. Chin J Power Eng, 2016, 36(2):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201602010.htm
    [25] 刘少武.硫酸工作手册[M].南京:东南大学出版社, 2001.

    LIU Shao-wu. Sulfuric Acid Workbook[M]. Nanjing:Southeast University Press, 2001.
    [26] 陈晓露, 赵钦新, 鲍颖群, 王云刚, 李钰鑫. SO3脱除技术实验研究[J].动力工程学报, 2014, 34(12):966-971. http://www.cqvip.com/QK/95606A/201412/68797871504849524950484855.html

    CHEN Xiao-lu, ZHAO Qin-xin, BAO Ying-qun, WANG Yun-gang, LI Yu-xin. Experimental research on SO3 removal[J]. Chin J Power Eng, 2014, 34(12):966-971. http://www.cqvip.com/QK/95606A/201412/68797871504849524950484855.html
    [27] 常景彩, 董勇, 王志强, 闫君, 陈朋, 马春元.燃煤烟气中SO3转换吸收特性模拟实验[J].煤炭学报, 2010, 35(10):1717-1720. http://www.cqvip.com/QK/96550X/201010/35633271.html

    CHANG Jing-cai, DONG Yong, WANG Zhi-qiang, YAN Jun, CHEN Peng, MA Chun-yuan. Simulation experiment of SO3 transfer and absorption characteristics in coal fired flue gas[J]. J China Coal Soc, 2010, 35(10):1717-1720. http://www.cqvip.com/QK/96550X/201010/35633271.html
    [28] 张基标, 郝卫, 赵之军, 胡兴胜, 殷国强.锅炉烟气低温腐蚀的理论研究和工程实践[J].动力工程学报, 2011, 31(10):730-733, 738. http://www.wenkuxiazai.com/doc/5aa010d06f1aff00bed51eb8-4.html

    ZHANG Ji-biao, HAO Wei, ZHAO Zhi-jun, HU Xing-sheng, YIN Guo-qiang. Theoretical and practical research on mechanism of low-temperature corrosion caused by boiler flue gas[J]. Chin J Power Eng, 2011, 31(10):730-733, 738. http://www.wenkuxiazai.com/doc/5aa010d06f1aff00bed51eb8-4.html
    [29] 向柏祥, 赵从振, 丁艳军, 马润田, 吕俊复.烟气酸露点的测量和预测模型分析[J].清华大学学报(自然科学版), 2015, 55(10):1117-1124. http://www.cqvip.com/QK/93884X/201510/667841886.html

    XIANG Bai-xiang, ZHAO Chong-zhen, DING Yan-jun, MA Run-tian, LU Jun-fu. Measurement and prediction model for the acid dew point in flue gases[J]. J Tsinghua Univ (Sci Technol), 2015, 55(10):1117-1124. http://www.cqvip.com/QK/93884X/201510/667841886.html
    [30] 李婕, 贾斌, 羌宁.钍试剂分光光度法测定固定源烟气中SO3[J].环境污染与防治, 2008, 30(10):63-66. doi: 10.3969/j.issn.1001-3865.2008.10.018

    LI Jie, JIA Bin, QIANG Ning. Thorin colorimetric method for sulfur trioxide determination from stationary sources[J]. Environ Pollut Ctrl, 2008, 30(10):63-66. doi: 10.3969/j.issn.1001-3865.2008.10.018
    [31] GBT18204. 25-2000, 公共场所空气中氨测定方法[S].

    GBT18204. 25-2000, Method for determination of ammonia in the air of public places[S].
  • 加载中
图(8)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-01
  • 修回日期:  2017-10-19
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-01-10

目录

    /

    返回文章
    返回