留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤热解过程中Na对吡啶氮迁移释放的影响机理

张蓓 樊俊杰 邓加晓 任志远

张蓓, 樊俊杰, 邓加晓, 任志远. 煤热解过程中Na对吡啶氮迁移释放的影响机理[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60018-X
引用本文: 张蓓, 樊俊杰, 邓加晓, 任志远. 煤热解过程中Na对吡啶氮迁移释放的影响机理[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60018-X
ZHANG Bei, FAN Junjie, DENG Jiaxiao, REN Zhiyuan. Effect of Na on the migration and release of pyridine nitrogen during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60018-X
Citation: ZHANG Bei, FAN Junjie, DENG Jiaxiao, REN Zhiyuan. Effect of Na on the migration and release of pyridine nitrogen during coal pyrolysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60018-X

煤热解过程中Na对吡啶氮迁移释放的影响机理

doi: 10.1016/S1872-5813(21)60018-X
基金项目: 国家重点研发计划(2016YFB0600304)项目资助
详细信息
    作者简介:

    张蓓(1997-),女,硕士研究生,18526282130@163.com

    通讯作者:

    樊俊杰,男,博士,讲师,fjj2006jj@126.com

  • 中图分类号: TQ530.2

Effect of Na on the migration and release of pyridine nitrogen during coal pyrolysis

Funds: The project was supported by the National Key Research and Development Plan(2016YFB0600304)
  • 摘要: 基于密度泛函理论和过渡态原理,在M06-2X/6-311G(d)水平上研究了煤热解过程中碱金属Na对HCN和NH3形成的反应机理和生成路径的影响。选择含吡啶的七元环作为煤模型,以Na在煤表面的吸附结构作为含Na煤模型。结果表明,Na的存在显著增强了吡啶环中N、C原子间键合力,使N原子从苯环中剥离需要更高的活化能,从而抑制了HCN的生成;但Na能提高煤的表面活性,Na存在时NH3生成的速率决定步骤能垒值比无Na时低271.35 kJ/mol,对NH3的形成有明显促进作用。
  • 图  1  煤中主要含氮化合物吡啶Zigzag模型结构图

    Figure  1.  Structure diagram of zigzag model for main nitrogen compounds in coal

    图  2  吡啶氮热解生成HCN的反应过程

    Figure  2.  Pyrolytic reaction pathways based on coal to generate HCN

    图  3  加Na吡啶氮热解生成HCN的反应过程

    Figure  3.  Pyrolytic reaction pathways based on coal to generate HCN with presence of Na

    图  4  煤热解过程中生成HCN的反应能垒图

    Figure  4.  The reaction energy for the formation of HCN in pyrolysis process

    图  5  R1和R2表面原子的Mulliken电荷分布示意图

    Figure  5.  Mulliken atomic charges of R1 and R2

    图  6  Na对IM4 HOMO/LUMO轨道的影响

    Figure  6.  The effect of Na on HOMO and LUMO of IM4

    图  7  Na存在下IM4表面原子的Mulliken电荷分布示意图

    Figure  7.  Mulliken charge distribution of IM4 surface atoms in the presence of Na

    图  8  吡啶氮热解释放NH3的反应过程

    Figure  8.  Pyrolytic reaction pathways based on coal to generate NH3

    图  9  含Na条件下吡啶氮热解释放NH3的反应过程

    Figure  9.  Pyrolytic reaction pathways based on coal to generate NH3 with presence of Na

    图  10  煤热解过程中生成NH3的反应能垒图

    Figure  10.  The reaction energy for the formation of NH3 in pyrolysis process

    图  11  IM3表面原子的Mulliken电荷分布示意图

    Figure  11.  Mulliken atomic charges of IM3

    图  12  Na对IM3 HOMO/LUMO轨道的影响

    Figure  12.  The effect of Na on HOMO and LUMO of IM3

  • [1] BP. BP Statistical Review of World Energy 2020[Z].
    [2] CHEN Z, YUAN S, LIANG Q, WANG F, YU Z. Distribution of HCN, NH3, NO and N2 in an entrained flow gasifier[J]. Chem Eng J,2009,148(2/3):312−318.
    [3] TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX: Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel,2006,85(10/11):1411−1417.
    [4] TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, CHIBA T, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VII: Pyrolysis and gasification of cane trash with steam[J]. Fuel,2005,84(4):371−376. doi: 10.1016/j.fuel.2004.09.018
    [5] CHANG L P, XIE Z L, XIE K C, PRATT K C, HAYASHI J, CHIBA T, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI: Effects of gas atmosphere on the formation of NH3 and HCN[J]. Fuel,2003,82(10):1159−1166. doi: 10.1016/S0016-2361(03)00024-3
    [6] HANSSON K M, SAMUELSSON J, TULLIN C, Åmand L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame,2004,137:265−277. doi: 10.1016/j.combustflame.2004.01.005
    [7] WOOD B J, SANCIER K M. The mechanism of the catalytic gasification of coal char: a critical review[J]. Catal Rev Sci Eng,1984,26:233−279. doi: 10.1080/01614948408078065
    [8] TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam. Fuel, 2006, 85: 1411-1417.
    [9] ZHANG Q, LIU H, LU G, YI L L, HU H Y, CHI H T, YAO H. Mechanism of conditioner CaO on NOx precursors evolution during sludge steam gasification[J]. P Combust Inst,2017,36:4003−4010. doi: 10.1016/j.proci.2016.09.006
    [10] LIU J, ZHANG X L, LU Q, SHAW A, HU B, JIANG X Y, DONG C Q. Mechanism study on the effect of alkali metal ions on the formation of HCN as NOx precursor during coal pyrolysis[J]. J Energy Inst,2019,92:604−612. doi: 10.1016/j.joei.2018.03.012
    [11] 王永刚, 郑盼盼, 杨萨莎, 张书, 白艳萍, 贾晓璐. 酸洗脱矿对胜利褐煤热解过程中N迁移转化的影响[J]. 燃料化学学报,2004,42(5):519−526.

    WANG Yong-gang, ZHENG Pan-pan, YANG Sa-sha, BAI Yan-ping, JIA Xiao-lu. Influence of demineralization using acid wash on N migration and transformation during pyrolysis of Shengli brown coal[J]. J Fuel Chem Technol,2004,42(5):519−526.
    [12] YASUO O, WU Z H, EDWARD F. Effect of alkali and alkaline earth metals on nitrogen release during temperature pro-grammed pyrolysis of coal[J]. Fuel,1997,76(14/15):1361−1367.
    [13] 郑盼盼, 王永刚, 武欣, 刘宸, 白艳萍, 林雄超. 载Na胜利褐煤热解过程中氮的迁移转化[J]. 燃料化学学报,2017,45(04):418−426. doi: 10.3969/j.issn.0253-2409.2017.04.005

    ZHENG Pan-pan, WANG Yong-gang, WU Xin, LIU Chen, BAI Yan-ping, LIN Xiong-chao. Transformation of nitrogen during pyrolysis of Na-loaded Shengli brown coal[J]. J Fuel Chem Technol,2017,45(04):418−426. doi: 10.3969/j.issn.0253-2409.2017.04.005
    [14] ZHANG X X, LV X X, WU H X, XIE M, LIN R Y, ZHOU Z J. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol,2020,48(6):663−673. doi: 10.1016/S1872-5813(20)30050-5
    [15] 刘吉, 陆强, 蒋晓燕, 胡斌, 董长青, 杨勇平. 碱金属离子对吡咯热解生成NOx前驱物HCN机理的影响[J]. 煤炭学报,2018,43(9):2633−2638.

    LIU Ji, LU Qiang, JIANG Xiao-yan, HU Bin, DONG Chang-qing, YANG Yong-ping. Effect of alkali metal ions on the formation mechanism of HCN as NOx precursor during pyrrole pyrolysis[J]. J China Coal Soc,2018,43(9):2633−2638.
    [16] MIN J X, WANG N B, WANG M F, HUO P J, LIU D. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms[J]. Int J Coal Sci Technol,2015,2(3):223−231. doi: 10.1007/s40789-015-0083-0
    [17] LI H B, YU Y, HAN M F, LEI Z. Simulation of coal char gasification using O2/CO2[J]. Int J Coal Sci Technol,2014,1(1):81−87. doi: 10.1007/s40789-014-0010-9
    [18] 陈萍, 顾明言, 汪嘉伦, 卢坤, 林郁郁. 含氮煤焦还原NO反应路径研究[J]. 燃料化学学报,2019,47(3):279−286.

    CHEN Ping, GU Ming-yan, WANG Jia-lun, LU Kun, LIN Yu-yu. Reaction Pathways for the Reduction of NO by nitrogen containing char[J]. J Fuel Chem Technol,2019,47(3):279−286.
    [19] MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. J Phys Chem A,2000,104(36):8409−8417. doi: 10.1021/jp001045p
    [20] 张守玉, 陈川, 施大钟, 吕俊复, 王健, 董爱霞. 高钠煤燃烧利用现状[J]. 中国电机工程学报,2013,33(5):1−12.

    ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LV Jun-fu, WANG Jian, DONG Ai-xia. Situation of combustion utilization of high sodium coal[J]. Proc CSEE,2013,33(5):1−12.
    [21] 宋维健, 宋国良, 齐晓宾, 吕清刚. 准东高钠煤气化过程中 Na 的迁移转化规律[J]. 煤炭学报,2016,41(2):490−496.

    SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LV Qing-gang. Sodium transformation law of Zhundong coal during gasification[J]. J China Coal Soc,2016,41(2):490−496.
    [22] 魏砾宏, 崔保崇, 陈勇, 杨天华, 郭良振. 高碱煤钠赋存形态及其燃烧过程中迁移转化的研究进展[J]. 燃料化学学报,2019,47(8):897−906. doi: 10.3969/j.issn.0253-2409.2019.08.001

    WEI Li-hong, CUI Bao-chong, CHEN Yong, YANG Tian-hua, GUO Liang-zhen. Occurrence of sodium in high alkali coal and its transformation during combustion[J]. J Fuel Chem Technol,2019,47(8):897−906. doi: 10.3969/j.issn.0253-2409.2019.08.001
    [23] ZHAO D, LIU H, SUN C, XU L, CAO Q. DFT study of the catalytic effect of Na on the gasification of carbon CO2[J]. Combust Flame,2018,197:471−486. doi: 10.1016/j.combustflame.2018.09.002
    [24] 高正阳, 刘晓硕, 李昂, 马传志, 李祥, 杨建蒙. 电厂烟气中 SO2 对活性炭吸附单质铅(Pb)的影响机理[J]. 环境科学学报,2019,39(11):3732−3739.

    GAO Zheng-yang, LIU Xiao-shuo, LI Ang, MA Chuan-zhi, LI Xiang, YANG Jian-meng. The effect of SO2 on adsorption of element lead toward activated carbon in coal fired power plants[J]. Acta Sci Circums,2019,39(11):3732−3739.
    [25] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R. Gaussian 09, revision e. 01. Wallingford CT: Gaussian, Inc, 2013.
    [26] ZHAO Y, TRUHLAR D G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical kinetics, Noncovalent interactions, Excited states, and Transition elements: Two new Functionals and Systematic Testing of Four M06-class Functionals and 12 other Functionals[J]. Theor Chem Acc,2008,120:215−241. doi: 10.1007/s00214-007-0310-x
    [27] HOHENSTEIN E G, CHILL S T, SHERRILL C D. Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules[J]. J Chem Theory Comput,2008,4(12):1996−2000. doi: 10.1021/ct800308k
    [28] UMADEVI D, SASTRY G N. Molecular and ionic interaction with graphene nanoflakes: a computational investigation of CO2, H2O, Li, Mg, Li+, and Mg2+ interaction with polycyclic aromatic hydrocarbons[J]. J Phys Chem C,2011,115:9656−9667. doi: 10.1021/jp201578p
    [29] 朱廷钰, 汤忠, 黄戒介, 张建民, 汪洋. 煤温和气化特性的热重研究[J]. 燃料化学学报,1999,27(5):420−423.

    ZHU Ting-yu, TANG Zhong, HUANG Jie-jie, ZHANG Jian-min, WANG Yang. Thermo-gravimetric study of coal mild gasification[J]. J Fuel Chem Technol,1999,27(5):420−423.
    [30] ZHANG Z Y. Study on Influence Mechanism of Sodium on Zhundong Coal Pyrolysis and Gasification[D]. Beijing: North China Electric Power University, 2017.
    [31] 秦玲丽, 崔银萍, 徐明艳, 常丽萍. 煤氮催化转化研究中的主要影响因素分析[J]. 现代化工,2006,26(2):382−385.

    QIN Ling-li, CUI Yin-ping, XU Ming-yan, CHANG Li-ping. Main influencing factors in the research on catalytic conversion of coal-nitrogen[J]. Mod Chem Ind,2006,26(2):382−385.
  • 加载中
图(12)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-14

目录

    /

    返回文章
    返回