留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FCC油浆富芳烃抽出油组成分析

冯祎 孙昱东 张帅

冯祎, 孙昱东, 张帅. FCC油浆富芳烃抽出油组成分析[J]. 燃料化学学报(中英文), 2021, 49(6): 766-770. doi: 10.1016/S1872-5813(21)60027-0
引用本文: 冯祎, 孙昱东, 张帅. FCC油浆富芳烃抽出油组成分析[J]. 燃料化学学报(中英文), 2021, 49(6): 766-770. doi: 10.1016/S1872-5813(21)60027-0
FENG Yi, SUN Yu-dong, ZHANG Shuai. Composition analysis of aromatics-rich extraction oil from FCC slurry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 766-770. doi: 10.1016/S1872-5813(21)60027-0
Citation: FENG Yi, SUN Yu-dong, ZHANG Shuai. Composition analysis of aromatics-rich extraction oil from FCC slurry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 766-770. doi: 10.1016/S1872-5813(21)60027-0

FCC油浆富芳烃抽出油组成分析

doi: 10.1016/S1872-5813(21)60027-0
详细信息
    作者简介:

    冯祎:972684241@qq.com

    通讯作者:

    Tel:0532-86980605, E-mail:ydsun@upc.edu.cn

  • 中图分类号: TE624.5

Composition analysis of aromatics-rich extraction oil from FCC slurry

  • 摘要: 以中间基属FCC油浆的抽出油为原料,采用实沸点减压蒸馏切割为每20 ℃一个窄馏分,测量其密度、残炭和运动黏度等基本物性,并结合元素分析、核磁共振波谱以及全二维气相色谱/飞行时间质谱等考察了窄馏分中芳烃组成和结构的变化。结果表明,随着沸点升高,窄馏分的密度、残炭、运动黏度均呈现递增趋势,沸点达420 ℃后变化尤为明显;440 ℃之前窄馏分中的芳烃主要以三、四环为主,其后五环芳烃含量急剧增加。FCC油浆中的芳烃具有较高的缩合度且芳环上仅含有少量较短的烷基侧链;油浆窄馏分中的杂原子化合物主要以硫化物和氧化物为主,氮化物和卤化物含量较低。
  • FIG. 719.  FIG. 719.

    FIG. 719.  FIG. 719.

    图  1  抽出油实沸点蒸馏曲线

    Figure  1  True boiling point distillation curve of extracted oil

    图  2  抽出油窄馏分芳烃组成

    Figure  2  Aromatic composition of different narrow fractions determined by GC×GC-TOFMS.

    图  3  抽出油窄馏分杂原子化合物分布

    Figure  3  Distribution of heteroatomic compounds in various narrow fractions

    表  1  原料基本性质

    Table  1  Primary properties of the FCC slurry

    ρ20/(kg·m−3)Mw(carbon residue)/%μ100/(mm2·s−1)w(SARA)/%
    saturatesaromaticsresinsasphaltenes
    1120.203438.4314.0818.7772.376.062.80
    下载: 导出CSV

    表  2  窄馏分收率分布

    Table  2  Extraction yield of each narrow fraction from the FCC slurry

    IBP−380 ℃Yield w/% 480 ℃−FBP
    380−400 ℃400−420 ℃420−440 ℃440−460 ℃460−480 ℃
    5.6727.5920.2515.078.896.6915.08
    下载: 导出CSV

    表  3  原料及产物性质检测方法

    Table  3  Standards of testing methods of feedstock and products

    NumberAnalysis itemMethod of analysis
    1ρ20, density at 20 °C, (kg·m−3)GB/T 2540—1981
    2M, average molecular weightSH/T 0583—1994
    3w,carbon residue,%GB/T 17144—1997
    4μ100,kinematic viscosity, (mm2·s−1)GB/T 11137—1989
    下载: 导出CSV

    表  4  窄馏分物性变化

    Table  4  Physical properties of narrow fractions

    Fractionρ20/(kg·m−3)w (carbon residue)/%μ100/(mm2·s−1)
    360−380 ℃1.10080.123.63
    380−400 ℃1.10120.135.53
    400−420 ℃1.10660.258.07
    420−440 ℃1.11690.7010.30
    440−460 ℃1.12682.6518.10
    460−480 ℃1.12947.4738.43
    480−500 ℃1.185016.0181.44
    500 ℃−FBP1.225025.28132.50
    下载: 导出CSV

    表  5  C、H、S、N元素分析及VPO分子量

    Table  5  Elemental composition and molecular weight of all narrow fractions

    Fractionn(H)/n(C) w/% M
    HCSN
    360−380 ℃0.896.8890.612.170.10208
    380−400 ℃0.876.6191.382.000.07256
    400−420 ℃0.866.5991.761.860.06263
    420−440 ℃0.826.2491.901.820.05291
    440−460 ℃0.826.2791.781.720.06313
    460−480 ℃0.806.0590.361.510.07325
    480−500 ℃0.796.0592.121.440.05334
    500 ℃−FBP0.745.6792.661.060.05
    下载: 导出CSV

    表  6  窄馏分中不同化学位移氢的含量

    Table  6  Content of hydrogen species (%) of different chemical shifts in each narrow fraction determined by 1H-NMR

    Fraction w/%
    HγHβHαHA
    IBP−380 ℃0.7311.3543.6344.28
    380−400 ℃0.8910.9843.3044.83
    400−420 ℃0.8210.1243.2245.84
    420−440 ℃0.649.4843.8346.05
    440−460 ℃0.619.3443.6446.41
    460−480 ℃0.719.5841.6148.11
    480−500 ℃0.538.8441.5949.04
    下载: 导出CSV

    表  7  窄馏分核磁共振H谱结构参数

    Table  7  Structural parameters of narrow fractions derived by the improved B-L method based on the 1H-NMR results

    FractionCTHTRARTRNfafNfPσHAU/CA
    IBP−380 ℃15.6914.202.573.741.170.750.220.030.330.80
    380−400 ℃19.4816.793.604.681.070.760.170.070.330.75
    400−420 ℃20.0817.203.804.790.990.770.150.090.320.75
    420−440 ℃22.2718.024.465.571.120.780.150.070.320.70
    440−460 ℃23.9019.474.885.840.960.780.120.100.320.71
    460−480 ℃24.4519.515.126.020.900.790.110.100.300.69
    480−500 ℃25.6220.025.496.360.870.800.100.100.300.68
    下载: 导出CSV

    表  8  窄馏分中不同化学位移碳的含量

    Table  8  Fractions of carbon species (%) of different chemical shifts in each narrow fraction determined by 13C-NMR

    Fraction$ f_{{\rm{a}}} $/%$ f^{{\rm{H}}}_{{\rm{a}}} $/%$f^{{\rm{B}}}_{{\rm{a}}} $/%$f^{{\rm{C}}}_{{\rm{a}}} $/%$f^{{\rm{O}}}_{{\rm{a}}}$/%$ f^{{\rm{C}}}_{{\rm{a}}} $/%$ f_{{\rm{al}}} $/%$ f^{{\rm{A}}}_{{\rm{al}}} $/%$ f^{{\rm{B}}}_{{\rm{al}}} $/%$ f^{{\rm{H}}}_{{\rm{al}}} $/%$ f^{{\rm{O}}}_{{\rm{al}}} $/%
    360−380 ℃80.2461.2515.483.510019.7611.762.335.590.08
    380−400 ℃80.0557.6117.664.790019.9512.312.445.200
    400−420 ℃81.8456.3018.685.910.670.2918.1511.452.144.520.03
    420−440 ℃80.8555.0519.585.880.34019.1511.982.454.720
    440−460 ℃80.8557.0618.774.670.130.2119.1511.592.435.130
    460−480 ℃84.3756.1420.376.691.18015.6310.602.232.800
    480−500 ℃83.4473.457.69002.3116.567.180.868.470
    note: fa, aromatic carbon; $ f^{{\rm{H}}}_{{\rm{a}}} $, proton aromatic carbon; $ f^{{\rm{B}}}_{{\rm{a}}} $, bridgehead aromatic carbon; $ f^{{\rm{S}}}_{{\rm{a}}} $, lateral aromatic carbon; $ f^{{\rm{O}}}_{{\rm{a}}} $ oxygen-bonded aromatic carbon; $ f^{{\rm{C}}}_{{\rm{a}}} $, carbonyl aromatic carbon; $ f_{{\rm{al}}} $, saturated carbon; $f^ {\rm{A} }_{ {\rm{al} } }$, lipomethyl carbon; $ f^{B}_{{\rm{al}}} $, aromatic ring methyl carbon; $ f^{{\rm{H}}}_{{\rm{al}}} $, methylene and methine carbon; $ f^{{\rm{O}}}_{{\rm{al}}} $, oxygen connected saturated carbon
    下载: 导出CSV
  • [1] 刘丽强. 重油催化裂化油浆综合利用及进展[J]. 广州化工,2015,43(9):34−35+38. doi: 10.3969/j.issn.1001-9677.2015.09.014

    LIU Li-qiang. Comprehensive utilization and progress of RFCC slurry[J]. Guangzhou Chem Ind,2015,43(9):34−35+38. doi: 10.3969/j.issn.1001-9677.2015.09.014
    [2] 程意茹, 蒋定建, 方晓玲. 催化裂化油浆的应用研究[J]. 中国石油和化工标准与质量,2016,36(15):72−73, 75. doi: 10.3969/j.issn.1673-4076.2016.15.045

    CHENG Yi-ru, JIANG Ding-jian, FANG Xiao-ling. Application study of FCC slurry[J]. China Pet Chem Standard Quality,2016,36(15):72−73, 75. doi: 10.3969/j.issn.1673-4076.2016.15.045
    [3] 李林, 徐海清. 催化油浆综合利用的技术措施[J]. 化学工业与工程技术,2013,34(1):20−24.

    LI Lin, XU Hai-qing. Technical measures for comprehensive utilization of catalytic slurry oil[J]. J Chem Ind Eng,2013,34(1):20−24.
    [4] 兰翔, 许志明, 赵锁奇, 王仁安. 大庆和辽河油浆窄馏分的性质及组成[J]. 石油大学学报(自然科学版),2001,(6):74−77, 3.

    LAN Xiang, XU Zhi-ming, ZHAO Suo-qi, WANG Ren-an. Propertiep and components of narrow fractions of Daqing and Liaohe decanted oils[J]. J China Univ Pet (Ed Nat Sci),2001,(6):74−77, 3.
    [5] 兰翔, 赵锁奇, 许志明, 王仁安. 大庆、辽河油浆窄馏分的环状结构、组成的比较[J]. 石油学报(石油加工),2002,(2):14−19.

    LAN Xiang, XU Zhi-ming, ZHAO Suo-qi, WANG Ren-an. Comparison of structure and composition of rings in narrow fractions of DQ and LH decant oil[J]. Acta Pet Sin (Pet Process Sect),2002,(2):14−19.
    [6] 王遥. FCC油浆的结构表征及提高其抗老化性能的改性反应研究[D]. 上海: 华东理工大学, 2018.

    WANG Yao. Characterization of FCC Slurry and Study of Modified Reaction to Increase Aging Resistance[D]. Shanghai: East China University of Science and Technology, 2018.
    [7] 常泽军, 刘熠斌, 冯翔, 杨朝合. 石蜡基属催化裂化轻油浆化学结构随沸点变化规律研究[J]. 石油学报(石油加工),2017,33(4):667−673.

    CHANG Ze-jun, LIU Yi-bin, FENG Xiang, YANG Chao-he. Variation regularity of chemical structure of paraffin-based FCC light slurry over boiling point[J]. Acta Pet Sin (Pet Process Sect),2017,33(4):667−673.
    [8] 张桧然, 沈本贤, 孙辉, 刘纪昌. 南海原油胶质、沥青质结构表征及原油降黏研究[J]. 石油炼制与化工,2015,46(12):31−40. doi: 10.3969/j.issn.1005-2399.2015.12.011

    ZHANG Hui-ran, SHEN Ben-xian, SUN Hui, LIU Ji-chang. Structure characterization of resin and asphaltene and viscosity reduction of south China Sea crude oil[J]. China Pet Process Pet Technol,2015,46(12):31−40. doi: 10.3969/j.issn.1005-2399.2015.12.011
    [9] WANDAS R. Structural characterization of asphaltenes from raw and desulfurized vacuum residue and correlation between asphaltene content and the tendency of sediment formation in H-iol heavy products[J]. Pet Sci Technol,2007,25(1):153−168.
    [10] BROWN J K, LADNER W R. A comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel,1960,39(1):87−96.
    [11] 郭琨, 周建, 刘泽龙. 全二维气相色谱-飞行时间质谱联用技术分析重馏分油中芳烃组成[J]. 色谱,2012,30(2):128−134.

    GUO Kun, ZHOU Jian, LIU Ze-long. Characterization of aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Chin J Chromatography,2012,30(2):128−134.
    [12] 赵小宁. FCC油浆抽提分离工艺研究[D]. 青岛: 中国石油大学(华东), 2019.

    ZHAO Xiao-ning. Study on the extraction and separation technology of FCC slurry[D]. Qingdao: China University of Petroleum, 2019.
    [13] 孙昱东, 赵小宁, 冯祎. FCC油浆抽提分离产物结构组成分析[J]. 燃料化学学报,2020,48(8):937−941. doi: 10.3969/j.issn.0253-2409.2020.08.005

    SUN Yu-dong, ZHAO Xiao-ning, FENG Yi. Composition analysis of FCC slurry and its extraction products[J]. J Fuel Chem Technol,2020,48(8):937−941. doi: 10.3969/j.issn.0253-2409.2020.08.005
    [14] 刘莹. 油系针状焦的研究与生产现状[J]. 中外能源,2019,24(11):65−69.

    LI Ying. Research and production status of oil-based needle coke[J]. Sino-Global Energy,2019,24(11):65−69.
    [15] 徐春明, 杨朝合. 石油炼制工程(第四版)[M]. 北京: 石油工业出版社, 2009.

    XU Chun-ming, YANG Chao-he. Petroleum Refining Engineering (Fourth Edition)[M]. Beijing: Petroleum Industry Press, 2009.
  • 加载中
图(4) / 表(8)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  124
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-21
  • 修回日期:  2020-12-30
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回