Analysis of aromatics-rich extraction oil composition of FCC slurry
-
摘要: 以中间基属FCC油浆的抽出油为原料,采用实沸点减压蒸馏切割为每20 ℃一个窄馏分,采用密度、残炭、运动黏度等基本物性分析结果,结合元素分析、核磁共振波谱以及全二维气相色谱/飞行时间质谱等考察了窄馏分中芳烃组成和结构的变化。结果表明,随着沸点升高,窄馏分的密度、残炭、运动黏度呈现递增趋势,420 ℃后变化尤为明显;440 ℃之前窄馏分中的芳烃主要以三、四环为主,其后五环芳烃含量急剧增加;FCC油浆中的芳烃具有较高的缩合度且芳环上仅含有少量较短的烷基侧链;油浆窄馏分中的杂原子化合物主要以硫化物和氧化物为主,氮化物和卤化物含量较低。Abstract: The extracted oil of intermediate base FCC slurry is divided into eight narrow fractions with boiling point range of 20 ℃ by vacuum distillation. The aromatic composition of narrow fractions were obtained by means of density, carbon residue, kinematic viscosity, elemental analysis, 1H-NMR、13C-NMR, and GC × GC TOF MS. The results showed that the density, carbon residue and kinematic viscosity of the narrow fractions increased with the increase of boiling point, especially after 420 ℃. The aromatics mainly consisted of tricyclic and tetracyclic in narrow fractions before 440 ℃. The pentacyclic aromatics present in narrow fraction of 400−420 ℃and increased rapidly after 440 ℃. The aromatics in FCC slurry are highly-condensed and contain a small amount of short-alkyl groups. The heteratomic compounds in the narrow fraction are mainly sulfide and oxide, and the content of nitride and halide is very low.
-
表 1 原料基本性质
Table 1. Main properties of FCC slurry
ρ20/(kg·m−3) M ω(carbon residue)/% ν100/(mm2·s−1) ω(SARA)/% Saturates Aromatics Resins Asphaltenes 1120.20 343 8.43 14.08 18.77 72.37 6.06 2.80 表 2 窄馏分收率分布
Table 2. Narrow fraction yield distribution
IBP~380 ℃ 380~400 ℃ 400~420 ℃ 420~440 ℃ 440~460 ℃ 460~480 ℃ 480 ℃~FBP 5.67 27.59 20.25 15.07 8.89 6.69 15.08 表 3 原料及产物性质检测方法
Table 3. Standards of testing methods of feedstock and products
Number Analysis item Method of analysis 1 ρ20/(kg·m-3) GB/T 2540-1981 2 M SH/T 0583-1994 3 ω(carbon residue)/% GB/T 17144-1997 4 ν100/(mm2·s-1) GB/T 11137-1989 表 4 窄馏分物性变化
Table 4. Physical properties of narrow fractions
Fraction ρ20/(kg·m-3) ω(carbon residue)/% ν100/(mm2·s-1) 360~380 ℃ 1.1008 0.12 3.63 380~400 ℃ 1.1012 0.13 5.53 400~420 ℃ 1.1066 0.25 8.07 420~440 ℃ 1.1169 0.70 10.30 440~460 ℃ 1.1268 2.65 18.10 460~480 ℃ 1.1294 7.47 38.43 480~500 ℃ 1.1850 16.01 81.44 500 ℃~FBP 1.2250 25.28 132.50 表 5 C、H、S、N元素分析及VPO分子量
Table 5. Element analysis of C、H、S、N and molecular weight
Fraction n(H)/n(C) ω(H)/% ω(C)/% ω(S)/% ω(N)/% M 360~380 ℃ 0.89 6.88 90.61 2.17 0.10 208 380~400 ℃ 0.87 6.61 91.38 2.00 0.07 256 400~420 ℃ 0.86 6.59 91.76 1.86 0.06 263 420~440 ℃ 0.82 6.24 91.90 1.82 0.05 291 440~460 ℃ 0.82 6.27 91.78 1.72 0.06 313 460~480 ℃ 0.80 6.05 90.36 1.51 0.07 325 480~500 ℃ 0.79 6.05 92.12 1.44 0.05 334 500 ℃~FBP 0.74 5.67 92.66 1.06 0.05 — 表 6 窄馏分中不同化学位移氢的含量
Table 6. Hydrogen content of different chemical shift in narrow fractions
Fraction Hγ/% Hβ/% Hα/% HA/% IBP~380 ℃ 0.73 11.35 43.63 44.28 380~400 ℃ 0.89 10.98 43.30 44.83 400~420 ℃ 0.82 10.12 43.22 45.84 420~440 ℃ 0.64 9.48 43.83 46.05 440~460 ℃ 0.61 9.34 43.64 46.41 460~480 ℃ 0.71 9.58 41.61 48.11 480~500 ℃ 0.53 8.84 41.59 49.04 表 7 窄馏分核磁共振H谱结构参数
Table 7. Structural parameters of narrow fractions by 1H-NMR
Fraction CT HT RA RT RN fa fN fP σ HAU/CA IBP~380 ℃ 15.69 14.20 2.57 3.74 1.17 0.75 0.22 0.03 0.33 0.80 380~400 ℃ 19.48 16.79 3.60 4.68 1.07 0.76 0.17 0.07 0.33 0.75 400~420 ℃ 20.08 17.20 3.80 4.79 0.99 0.77 0.15 0.09 0.32 0.75 420~440 ℃ 22.27 18.02 4.46 5.57 1.12 0.78 0.15 0.07 0.32 0.70 440~460 ℃ 23.90 19.47 4.88 5.84 0.96 0.78 0.12 0.10 0.32 0.71 460~480 ℃ 24.45 19.51 5.12 6.02 0.90 0.79 0.11 0.10 0.30 0.69 480~500 ℃ 25.62 20.02 5.49 6.36 0.87 0.80 0.10 0.10 0.30 0.68 表 8 窄馏分中不同化学位移碳的含量
Table 8. Carbon content of different chemical shift in narrow fractions
Fraction fa/% faH/% faB/% faS/% faO/% faC/% fal/% falA/% falB/% falH/% falO/% 360~380 ℃ 80.24 61.25 15.48 3.51 0 0 19.76 11.76 2.33 5.59 0.08 380~400 ℃ 80.05 57.61 17.66 4.79 0 0 19.95 12.31 2.44 5.20 0 400~420 ℃ 81.84 56.30 18.68 5.91 0.67 0.29 18.15 11.45 2.14 4.52 0.03 420~440 ℃ 80.85 55.05 19.58 5.88 0.34 0 19.15 11.98 2.45 4.72 0 440~460 ℃ 80.85 57.06 18.77 4.67 0.13 0.21 19.15 11.59 2.43 5.13 0 460~480 ℃ 84.37 56.14 20.37 6.69 1.18 0 15.63 10.60 2.23 2.80 0 480~500 ℃ 83.44 73.45 7.69 0 0 2.31 16.56 7.18 0.86 8.47 0 注:fa-芳碳分率;faH-质子芳碳分率;faB-桥头芳碳分率;faS-侧枝芳碳分率;faO-氧接芳碳分率;faC-羰基芳碳分率;fal-饱和碳分率;falA-脂甲基碳分率;falB-芳环甲基碳分率;falH-亚甲基、次甲基碳分率;falO-氧接饱和碳分率 -
[1] 刘丽强. 重油催化裂化油浆综合利用及进展[J]. 广州化工,2015,43(09):34−35+38. doi: 10.3969/j.issn.1001-9677.2015.09.014LIU Li-qiang. Comprehensive utilization and progress of RFCC slurry[J]. Guangzhou Chem Ind,2015,43(09):34−35+38. doi: 10.3969/j.issn.1001-9677.2015.09.014 [2] 程意茹, 蒋定建, 方晓玲. 催化裂化油浆的应用研究[J]. 中国石油和化工标准与质量,2016,36(15):72−73+75. doi: 10.3969/j.issn.1673-4076.2016.15.045CHENG Yi-ru, JIANG Ding-jian, FANG Xiao-ling. Application study of FCC slurry[J]. China Pet and Chem Standard and Quality,2016,36(15):72−73+75. doi: 10.3969/j.issn.1673-4076.2016.15.045 [3] 李林, 徐海清. 催化油浆综合利用的技术措施[J]. 化学工业与工程技术,2013,34(1):20−24.LI Lin, XU Hai-qing. Technical measures for comprehensive utilization of catalytic slurry oil[J]. Journal of Chem Ind & Eng,2013,34(1):20−24. [4] 兰翔, 许志明, 赵锁奇, 王仁安. 大庆和辽河油浆窄馏分的性质及组成[J]. 石油大学学报(自然科学版),2001(06):74−77+3.LAN Xiang, XU Zhi-ming, ZHAO Suo-qi, WANG Ren-an. Propertiep and components of narrow fractions of Daqing and Liaohe decanted oils[J]. Journal of China University of Pet (Edition of Natural Science),2001(06):74−77+3. [5] 兰翔, 赵锁奇, 许志明, 王仁安. 大庆、辽河油浆窄馏分的环状结构、组成的比较[J]. 石油学报(石油加工),2002(02):14−19.LAN Xiang, XU Zhi-ming, ZHAO Suo-qi, WANG Ren-an. Comparison of structure and composition of rings in narrow fractions of DQ and LH decant oil[J]. Acta Pet Sin (Pet Process Sect),2002(02):14−19. [6] 王遥. FCC油浆的结构表征及提高其抗老化性能的改性反应研究[D]. 华东理工大学, 2018.WANG Yao. Characterization of FCC Slurry and Study of Modified Reaction to Increase Aging Resistance[D]. Shanghai: East China University of Science and Technology, 2018. [7] 常泽军, 刘熠斌, 冯翔, 杨朝合. 石蜡基属催化裂化轻油浆化学结构随沸点变化规律研究[J]. 石油学报(石油加工),2017,33(04):667−673.CHANG Ze-jun, LIU Yi-bin, FENG Xiang, YANG Chao-he. Variation regularity of chemical structure of paraffin-based FCC light slurry over boiling point[J]. Acta Pet Sin (Pet Process Sect),2017,33(04):667−673. [8] 张桧然, 沈本贤, 孙辉, 刘纪昌. 南海原油胶质、沥青质结构表征及原油降黏研究[J]. 石油炼制与化工,2015,46(12):31−40. doi: 10.3969/j.issn.1005-2399.2015.12.011ZHANG Hui-ran, SHEN Ben-xian, SUN Hui, LIU Ji-chang. Structure characterization of resin and asphaltene and viscosity reduction of south china sea crude oil[J]. China Pet Process Pet Tech,2015,46(12):31−40. doi: 10.3969/j.issn.1005-2399.2015.12.011 [9] WANDAS R. Structural characterization of asphaltenes from raw and desulfurized vacuum residue and correlation between asphaltene content and the tendency of sediment formation in H-iol heavy products[J]. Petroleum Sci Tech,2007,25(1):153−168. [10] BROWN J K, LADNER W R. A comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel,1960,39(1):87−96. [11] 郭琨, 周建, 刘泽龙. 全二维气相色谱-飞行时间质谱联用技术分析重馏分油中芳烃组成[J]. 色谱,2012,30(02):128−134.GUO Kun, ZHOU Jian, LIU Ze-long. Characterization of aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography,2012,30(02):128−134. [12] 赵小宁. FCC油浆抽提分离工艺研究[D]. 中国石油大学(华东), 2019.ZHAO Xiao-ning. Study on the extraction and separation technology of FCC slurry[D]. Qingdao: China University of Petroleum, 2019. [13] 孙昱东, 赵小宁, 冯祎. FCC油浆抽提分离产物结构组成分析[J]. 燃料化学学报,2020,48(08):937−941. doi: 10.3969/j.issn.0253-2409.2020.08.005SUN Yu-dong, ZHAO Xiao-ning, FENG Yi. Composition analysis of FCC slurry and its extraction products[J]. Journal of Fuel Chem and Tech,2020,48(08):937−941. doi: 10.3969/j.issn.0253-2409.2020.08.005 [14] 刘莹. 油系针状焦的研究与生产现状[J]. 中外能源,2019,24(11):65−69.LI Ying. Research and production status of oil-based needle coke[J]. Sino-Global Energy,2019,24(11):65−69. [15] 徐春明, 杨朝合. 石油炼制工程(第四版). 北京: 石油工业出版社, 2009.XU Chun-ming, YANG Chao-he. Petroleum Refining Engineering (Fourth Edition)[M]. Beijing: Pet Ind Press, 2009. -