留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长焰煤分选组分对高硫炼焦煤热解硫变迁及焦反应性的调控

李文广 申岩峰 郭江 孔娇 王美君 常丽萍

李文广, 申岩峰, 郭江, 孔娇, 王美君, 常丽萍. 长焰煤分选组分对高硫炼焦煤热解硫变迁及焦反应性的调控[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60034-8
引用本文: 李文广, 申岩峰, 郭江, 孔娇, 王美君, 常丽萍. 长焰煤分选组分对高硫炼焦煤热解硫变迁及焦反应性的调控[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60034-8
LI Wen-guang, SHEN Yan-feng, GUO Jiang, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Effect of flotation fractions of long-flame coal on regulation of sulfur and coke reactivity during pyrolysis of high-sulfur coking coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60034-8
Citation: LI Wen-guang, SHEN Yan-feng, GUO Jiang, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Effect of flotation fractions of long-flame coal on regulation of sulfur and coke reactivity during pyrolysis of high-sulfur coking coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60034-8

长焰煤分选组分对高硫炼焦煤热解硫变迁及焦反应性的调控

doi: 10.1016/S1872-5813(21)60034-8
基金项目: 国家自然科学基金项目(U1910201,21878208),山西省应用基础研究计划重点自然基金项目(201901D111001(ZD)),山西省高等学校优秀青年学术带头人支持计划资助
详细信息
    作者简介:

    李文广:1716312868@qq.com

    通讯作者:

    Tel: 0351-6010482; E-mail: wangmeijun@tyut.edu.cn

  • 中图分类号: TQ530.2

Effect of flotation fractions of long-flame coal on regulation of sulfur and coke reactivity during pyrolysis of high-sulfur coking coal

Funds: The project was supported by National Natural Science Foundation of China (U1910201, 21878208), Shanxi Province Science Foundation for Key Program (201901D111001(ZD)), Supported by program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
  • 摘要: 采用重介质分选法得到长焰煤不同密度级分选组分,利用红外、拉曼、热重、基式流动度、静态氮吸附仪、X射线衍射仪等手段分析研究了不同分选组分对高硫炼焦煤热解过程中硫变迁及焦反应性的影响。结果表明,低密度组分含有较多的脂肪侧链,结构有序度低,而矿物质和惰质组则富集于高密度组分中。低密度级组分由于碱性矿物质含量少,脂肪侧链多,与高硫炼焦煤共热解的脱硫率明显高于高密度组分。低密度组分中的中等分子量组分对胶质体的性质影响较小,高密度组分的矿物质和惰性组分对胶质体的劣化作用更加明显,同时使焦样的微晶结构有序度降低,缺陷位增多,粒焦的反应性升高。
  • 图  1  MHL分选组分与LL煤配煤热解脱硫率及焦中硫含量

    Figure  1.  Sulfur removal rate and sulfur content in coke during pyrolysis of coal blends of MHL flotation fractions and LL coal

    图  2  MHL分选组分的红外光谱图和拉曼光谱谱图

    Figure  2.  FTIR spectra and Raman spectra of MHL flotation fractions

    图  3  MHL分选组分焦的碳转化率

    Figure  3.  Carbon conversion rate of cokes from pyrolysis of MHL flotation fractions

    图  4  LL煤焦及MHL分选组分和LL煤配煤焦的反应性

    Figure  4.  CRI of LL coke and coal blend cokes from pyrolysis of LL coal and MHL flotation fractions

    图  5  MHL分选组分和LL煤配煤焦CRI实验值与计算值

    Figure  5.  CRI difference values of coal blend cokes from pyrolysis of LL coal and MHL flotation fractions

    图  6  MHL分选组分与LL煤配煤的TG和DTG曲线

    Figure  6.  TG and DTG curves of coal blends of MHL flotation fractions and LL coal

    图  7  MHL分选组分与LL煤配煤的基氏流动度

    Figure  7.  Gieseler fluidity curves of coal blends of MHL flotation fractions and LL coal

    图  8  MHL分选组分与LL煤配煤焦的微晶结构参数

    Figure  8.  Microcrystalline structure parameters of coal blend cokes from pyrolysis of LL coal and MHL flotation fractions

    表  1  实验用煤的分析数据

    Table  1.   Analysis parameter of coal samples

    SampleProximate analysis wt/%Ultimate analysis wt/%GY/mm
    MadAdVdafCdafHdafNdafSdO*
    LL0.209.7621.5088.494.691.421.943.2585.0016.50
    MHL3.544.9037.6381.614.991.070.3411.9710.00-
    note: ad: air dried basis; d: dry basis; daf: dry and ash-free basis; *: by difference.
    下载: 导出CSV

    表  2  实验用煤的灰成分分析

    Table  2.   Ash composition of coal samples

    SampleAsh composition wt/%R
    SiO2Al2O3Fe2O3CaOMgOTiO2SO3K2ONa2OP2O5
    LL48.7038.964.791.800.181.521.160.160.220.720.08
    MHL26.5813.2611.2721.763.130.5019.610.210.310.070.92
    下载: 导出CSV

    表  3  MHL分选组分的基本分析数据及其收率

    Table  3.   Analysis parameter and yield of MHL flotation fractions

    SampleProximate analysis wt/%Ultimate analysis wt/%MCI/%Yield/%
    MadAdVdafCdafHdafNdafSdO*
    MHL-1.302.380.9039.6281.665.281.160.1611.730.6454.40
    MHL-1.352.341.1238.8781.965.211.160.1611.500.7179.56
    MHL-1.452.261.8437.5482.165.141.130.1711.401.0790.88
    MHL-Raw3.544.9037.6381.614.991.070.3411.974.83100.00
    note: ad: air dried basis; d: dry basis; daf: dry and ash-free basis; *: by difference.
    下载: 导出CSV

    表  4  MHL分选组分的煤岩分析

    Table  4.   Petrographic analysis of MHL flotation fractions

    SampleVitrinite/
    %
    Liptinite/
    %
    Inertinite/
    %
    Mineral/
    %
    Rmax
    MHL-1.3083.810.4515.590.150.53
    MHL-1.3573.760.3025.640.300.60
    MHL-1.4565.310.2733.740.680.56
    MHL-Raw60.340.2638.111.290.51
    note: Rmax: Mean maximum vitrinite reflectance.
    下载: 导出CSV

    表  5  MHL分选组分红外和拉曼结构参数

    Table  5.   Structural parameters of FTIR and Raman spectra of MHL flotation fractions

    SamplefaI1I2I(Gr+Vl+Vr)/ID
    MHL-1.300.710.481.674.07
    MHL-1.350.720.521.573.37
    MHL-1.450.730.531.323.28
    MHL-Raw0.740.541.192.50
    下载: 导出CSV

    表  6  MHL分选组分与LL配煤的基氏流动度参数

    Table  6.   Gieseler fluidity parameters of coal blends of MHL flotation fractions and LL coal

    SampleT1/℃T2/℃T3/℃ΔT/℃Fmax/dd/min
    LL432.1474.9511.579.4244.7
    BC-coal-1.30432.1472.9502.069.918.3
    BC-coal-1.35427.3474.3504.876.519.4
    BC-coal-1.45428.1471.4501.973.815.9
    BC-coal-Raw429.5468.2500.571.09.9
    note: T1: softening temperature; T2: max fluidity temperature; T3: resolidification temperature; ΔT: plastic range; Fmax: maximum fluidity.
    下载: 导出CSV

    表  7  MHL不同分选组分与LL煤配煤焦的气孔结构参数

    Table  7.   Pore structure parameters of coal blend cokes from pyrolysis of LL coal and MHL flotation fractions

    SampleBC-coke-
    1.30
    BC-coke-
    1.35
    BC-coke-
    1.45
    BC-coke-
    Raw
    SBET/m2/g4.266.824.953.16
    rBJH/nm5.474.815.526.76
    VBJH/mm3/g1.791.772.321.79
    下载: 导出CSV
  • [1] WANG H, FENG Y, ZHANG X, LIN W, ZHAO Y. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel,2015,145:241−248. doi: 10.1016/j.fuel.2014.12.074
    [2] LIAO H, LI B, ZHANG B. Pyrolysis of coal with hydrogen-rich gases. 2 desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesisgas[J]. Fuel,1998,77:1643−1646. doi: 10.1016/S0016-2361(98)00076-3
    [3] GUO Z, TANG H, LIU J. Desulfurization of coke by recycling COG in coking process[J]. Fuel,2005,84:893−901. doi: 10.1016/j.fuel.2004.11.020
    [4] LIU Q, HU H, ZHU S, ZHOU Q, Li W, WEI X, XIE K. Desulfurization of coal by pyrolysis and hydropyrolysis with addition of KOH/NaOH[J]. Energy Fuels,2005,19:1673−1678. doi: 10.1021/ef0497053
    [5] 周仕学, 聂西文, 王荣春, 刘泽常. 高硫强粘结性煤与生物质共热解的研究[J]. 燃料化学学报,2000,28:294−297. doi: 10.3969/j.issn.0253-2409.2000.04.002

    ZHOU Shi-xue, NIE Xi-wen, WANG Rong-chun, LIU Ze-chang. Study on co-pyrolysis of high sulfur and strongly caking coal with biomass[J]. J. Fuel Chem. Technol.,2000,28:294−297. doi: 10.3969/j.issn.0253-2409.2000.04.002
    [6] 么秋香, 杜美利, 张锦仁. 高硫煤与生物质共热解脱有机硫研究[J]. 煤炭转化,2014,37:15−19. doi: 10.3969/j.issn.1004-4248.2014.01.004

    (YAO Qiu-xiang, DU Mei-li, ZHANG Jin-ren. Organic sulfur removel from high sulfur coal during co-pyrolysis with biomass[J]. Coal Convers.,2014,37:15−19. doi: 10.3969/j.issn.1004-4248.2014.01.004
    [7] MONDRAGON F, JARAMILLO A, SALDARRIGS F, QUINTEROA G, FERNANDEZA J, RUIZA W, HALL P J. The effects of morphological changes and mineral matter on H2S evolution during coal pyrolysis[J]. Fuel,1999,78(15):1841−1846. doi: 10.1016/S0016-2361(99)00096-4
    [8] IBARRA J V, PALACIOS J M, MOLINER R, BONET A J. Evidence of the reciprocal organic matter-pyrite interactions affecting sulfur removal during coal pyrolysis[J]. Fuel,1993,72(5):697−698.
    [9] WANG M, LIU L, WANG J, CHANG L, WANG H, HU Y. Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks[J]. Fuel Process. Technol.,2015,131:262−269. doi: 10.1016/j.fuproc.2014.10.038
    [10] SHEN Y, WANG M, WU Y, HU Y, KONG J, DUAN X, WANG J, CHANG L, BAO W. Role of gas coal in directional regulation of sulfur during coal blending coking of high organic-sulfur coking coal[J]. Energy Fuels,2020,34(3):2757−2764. doi: 10.1021/acs.energyfuels.9b03737
    [11] 张有芝. 瘦煤和长焰煤在捣固焦炉配煤中的优化配合[J]. 山西冶金,2006,(3):41−42. doi: 10.3969/j.issn.1672-1152.2006.03.016

    ZHANG You-zhi. Optimum blending of carbonaceous coal and long flame coal on stamt-charging coke oven[J]. Shanxi Metall.,2006,(3):41−42. doi: 10.3969/j.issn.1672-1152.2006.03.016
    [12] SHAO Y. Preliminary study on weakly caking coal blending coking and production practice[J]. Clean Coal Technol.,2005,11(3):41−44.
    [13] 杨俊和, 杜鹤桂, 钱湛芬, 崔平. 焦炭的粒焦反应性[J]. 东北大学学报,1999,20(3):286.

    YANG Jun-he, DU He-gui, QIAN Zhan-feng, CUI Ping. Reactivity of particulate coke[J]. J. Dongbei Univ.,1999,20(3):286.
    [14] ORREGO-RUIZ J A, CABANZO R, MEJIA-OSPINO E. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy[J]. Int. J. Coal Geol.,2011,85(3):307−310.
    [15] HE X, LIU X, NIE B, SUN D. FT-IR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206(15):555−563.
    [16] LI K, KHANNA R, ZHANG J, BARATI M, LIU Z, XU T, YANG T, SAHAJWALLA V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J]. Energy Fuels,2015,29(11):7178−7189. doi: 10.1021/acs.energyfuels.5b02064
    [17] BAYSAL M, YURUM A, YILDIZ B, YURUM Y. Structure of some western Anatolia coals investigated by FT-IR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J]. Int. J. Coal Geol.,2016,163:166−176. doi: 10.1016/j.coal.2016.07.009
    [18] WANG M, TIAN J, ROBERTS D G, CHANG L, XIE K. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J]. Fuel,2015,142:102−108. doi: 10.1016/j.fuel.2014.11.003
    [19] JIAO H, WANG M, KONG J, YAN D, GUO J, CHANG L. Contribution of single coal property to the changes of structure and reactivity of chars from blending coking[J]. J. Anal. Appl. Pyrolysis,2018,134:114−121. doi: 10.1016/j.jaap.2018.05.016
    [20] 高岩, 鲁光辉. 煤与生物质共热解的协同特性研究[J]. 洁净煤技术,2013,19(3):53−56.

    GAO Yan, LU Guang-hui. Collaborative characteristics of coal and biomass co-pyrolysis[J]. Clean Coal Technol.,2013,19(3):53−56.
    [21] MONDRAGON F, JARAMILLO A, SALDARRIAGA F, QUINTERO G, FERNANDEZ J, RUIZ W, HALL P. The effects of morphological changes and mineral matter on H2S evolution during coal pyrolysis[J]. Fuel,1999,78(15):1841−1846. doi: 10.1016/S0016-2361(99)00096-4
    [22] 忻仕河, 徐振刚. 大同煤不同显微组分富集物焦与CO2反应性研究[J]. 煤炭转化,2004,27(4):13−16. doi: 10.3969/j.issn.1004-4248.2004.04.003

    XIN Shi-he, XU Zhen-gang. Research into reactivity of char from coal maceral concentrates during gasification with CO2[J]. Coal Convers.,2004,27(4):13−16. doi: 10.3969/j.issn.1004-4248.2004.04.003
    [23] 谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002.

    XIE Ke-chang. Structure and reactivity of coal[M]. Beijing: Sci. Press, 2002.
    [24] XIE W, STANGER R, TRAN Q A, SMITH N, WALL T, LUCAS J. Impact of coal pyrolysis products as a rheological additive on thermoplasticity of a coking coal[J]. Energy Fuels,2018,32:4382−4390. doi: 10.1021/acs.energyfuels.7b03232
    [25] CASCAL M, DIAZ-FAES E, ALVAREZ R. Influence of the permeability of the coal plastic layer on coking pressure[J]. Fuel,2006,85(3):281−288. doi: 10.1016/j.fuel.2005.06.009
    [26] 杨志荣, 孟庆岩, 黄戒介, 王志青, 李春玉, 房倚天. 神木煤与不同黏结煤共热解交互作用规律的研究[J]. 燃料化学学报,2018,46(6):641−648. doi: 10.3969/j.issn.0253-2409.2018.06.001

    YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. J. Fuel Chem. Technol.,2018,46(6):641−648. doi: 10.3969/j.issn.0253-2409.2018.06.001
    [27] DIEZ M A, BARRIOCANAL C, ALVAREZ R. Plastic wastes as modifiers of the thermoplasticity of Coal[J]. Energy Fuels,2005,19(6):2304−2316. doi: 10.1021/ef0501041
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回