留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哈密煤与塔河重油共加氢反应性能的研究

贾梦婷 高山松 张彦军 张德祥

贾梦婷, 高山松, 张彦军, 张德祥. 哈密煤与塔河重油共加氢反应性能的研究[J]. 燃料化学学报(中英文), 2021, 49(7): 902-908. doi: 10.1016/S1872-5813(21)60037-3
引用本文: 贾梦婷, 高山松, 张彦军, 张德祥. 哈密煤与塔河重油共加氢反应性能的研究[J]. 燃料化学学报(中英文), 2021, 49(7): 902-908. doi: 10.1016/S1872-5813(21)60037-3
JIA Meng-ting, GAO Shan-song, ZHANG Yan-jun, ZHANG De-xiang. Co-hydrogenation behavior of Hami coal with Tahe residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 902-908. doi: 10.1016/S1872-5813(21)60037-3
Citation: JIA Meng-ting, GAO Shan-song, ZHANG Yan-jun, ZHANG De-xiang. Co-hydrogenation behavior of Hami coal with Tahe residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 902-908. doi: 10.1016/S1872-5813(21)60037-3

哈密煤与塔河重油共加氢反应性能的研究

doi: 10.1016/S1872-5813(21)60037-3
基金项目: 国家重点研发计划(2016YFB0600303)资助
详细信息
    作者简介:

    贾梦婷,E-mail:m15195913165@163.com

    通讯作者:

    E-mail: zdx@ecust.edu.cn

  • 中图分类号: TQ531.7

Co-hydrogenation behavior of Hami coal with Tahe residue

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600303)
  • 摘要: 采用高压釜考察了哈密煤与塔河重油单独加氢反应性能和共加氢反应性能,探索了哈密煤与塔河渣油共加氢的可行性技术路线。实验结果表明,哈密煤具有良好的液化反应性能,合适的反应温度为445 ℃,在445 ℃、9 MPa时转化率达98.74%,油收率达68.54%;塔河渣油单独加氢在较低反应温度时表现出明显的结焦倾向,很难实现加氢轻质化,430 ℃时,转化率仅有66.38%,轻质油收率也仅有50.01%,结焦率却高达9.45%,随着反应温度升高,结焦速率加剧;哈密煤与塔河渣油共加氢时转化率较低,结焦明显,煤/油比为40∶60时转化率为97.79%,油收率为73.36%。在共加氢体系中引入具有供氢性能溶剂能够有效抑制生焦,提高转化率,实现共加氢轻质化,在煤粉添加量为45%时,塔河渣油合适的添加量为20%,原料的转化率达到98.38%,油收率为74.82%。
  • FIG. 795.  FIG. 795.

    FIG. 795.  FIG. 795.

    图  1  塔河渣油的TG-DTG曲线

    Figure  1  TG-DTG curves of Tahe residue

    图  2  哈密煤的TG-DTG曲线

    Figure  2  TG-DTG curves of Hami coal

    图  3  哈密煤单独加氢反应性能

    Figure  3  Hydrogenation performance of Hami coal

    (a): Initial hydrogen pressure:10 MPa(b): Reaction temperature:445 ℃

    图  4  塔河渣油单独加氢反应性能

    Figure  4  Hydrogenation performance of Tahe residue

    (a): Initial hydrogen pressure: 9 MPa(b): Reaction temperature:460 ℃

    图  5  油煤直接共加氢反应性能

    Figure  5  Direct co-hydrogenation reaction performance of coal and residue

    图  6  油煤直接共加氢协同效应

    Figure  6  Synergistic effect of direct co-hydrogenation of coal and residue

    图  7  引入供氢溶剂后油煤共加氢反应性能

    Figure  7  Co-hydrogenation of oil and coal with hydrogen solvent introduced

    表  1  哈密煤的性质分析

    Table  1  Analysis of Hami coal

    Proximate analysis w/%Ultimate analysis wdaf/%n(H)/n(C)Petrographic analysis φ/%
    MadAdVdafFCdaf CHONSvitriniteinertiniteexinite
    2.346.8646.7753.23 75.44 5.5717.91 0.87 0.21 0.89 60.00 25.60 8.00
    下载: 导出CSV

    表  2  BSU循环溶剂族组成分析

    Table  2  Group composition of BSU recycle solvent

    Saturate w/%Aromatics w/%Resin w/%
    paraffinnaphthenicmonocyclic aromaticbicyclic aromatictricyclic aromatictetracyclic aromaticpentacyclic aromaticthiopheneother
    10.0012.2033.6021.408.704.100.304.501.004.20
    下载: 导出CSV

    表  3  塔河渣油的性质分析

    Table  3  Analysis of Tahe residue

    Ultimate analysis w/%n(H)/n(C)SARA composition w/%
    CHONSsaturatearomaticsresinasphaltene
    85.8110.290.730.502.671.4427.7034.0020.2018.10
    下载: 导出CSV

    表  4  塔河渣油平均分子结构参数

    Table  4  Average molecular structural parameters in the Tahe residue

    ItemsCalculated value
    fA0.32
    fN0.18
    fP0.50
    CA16.67
    CN9.73
    CP26.37
    RT7.47
    RA4.22
    RN3.24
    CI0.25
    HAU/CA0.53
    σ0.58
    L7.11
    Average molecular formulaC52.77H75.94S0.62N0.26O0.34
    下载: 导出CSV
  • [1] 张生玲, 胡晓晓. 中国能源贸易形势与前景[J]. 国际贸易,2020,(9):22−30.

    ZHANG Sheng-ling, HU Xiao-xiao. The situation and prospect of China’s energy trade[J]. Intertrade,2020,(9):22−30.
    [2] 宋官龙, 赵德智, 张志伟, 许茜. 渣油加氢工艺的现状及研究前景[J]. 石化技术,2017,24(7):1−3+7. doi: 10.3969/j.issn.1006-0235.2017.07.001

    SONG Guan-long, ZHAO De-zhi, ZHANG Zhi-wei, XU Qian. Current situation and research prospect of residue hydrogenation technology[J]. Petrochem Ind Technol,2017,24(7):1−3+7. doi: 10.3969/j.issn.1006-0235.2017.07.001
    [3] 赵鹏. 新疆淖毛湖煤直接加氢液化特性的研究[J]. 煤炭科学技术,2019,47(7):244−248.

    ZHAO Peng. Study on direct hydrogenation liquefaction characteristics of Naomaohu coal in Xinjiang[J]. Coal Sci Technol,2019,47(7):244−248.
    [4] 黄传峰, 李大鹏, 杨涛. 煤油共炼技术现状及研究趋势讨论[J]. 现代化工,2016,36(8):8−13.

    HUANG Chuan-feng, LI Da-peng, YANG Tao. Status and research trends of co-processing of coal and oil[J]. Mod Chem Ind,2016,36(8):8−13.
    [5] SHAN X, SHU G, LI K, ZHANG X, WANG H, CAO X, JIANG H, WENG H. Effect of hydrogenation of liquefied heavy oil on direct coal liquefaction[J]. Fuel,2017,194:291−296.
    [6] 李丽, 李克健, 吴秀章. 煤与石油重油共处理协同效应的初步分析[J]. 神华科技,2009,(6):64−67. doi: 10.3969/j.issn.1674-8492.2009.06.017

    LI Li, LI Ke-jian, WU Xiu-zhang. Synergistic effects and preliminary application of the coal/oil coprocessing[J]. Energy Sci Technol,2009,(6):64−67. doi: 10.3969/j.issn.1674-8492.2009.06.017
    [7] 商思玉, 凌开成, 王建平, 盛清涛, 申峻. 神府煤与胜利减压渣油共处理反应特性的研究[J]. 燃料化学学报,2005,33(1):47−52. doi: 10.3969/j.issn.0253-2409.2005.01.010

    SHANG Si-yu, LING Kai-cheng, WANG Jian-ping, SHENG Qing-tao, SHEN Jun. Reaction characteristics of coprocessing of Shenfu coal and Shengli vacuum residue[J]. J Fuel Chem Technol,2005,33(1):47−52. doi: 10.3969/j.issn.0253-2409.2005.01.010
    [8] 胡发亭, 李军芳, 毛学锋. 重质油与长焰煤共加氢反应性能[J]. 石油加工,2019,35(4):798−806.

    HU Fa-ting, LI Jun-fang, MAO Xue-feng. Co-hydrogenation performance of heavy oil with long flame coal[J]. Acta Pet Sin (Pet Process Sect),2019,35(4):798−806.
    [9] 王光耀, 张晓静, 陈贵锋, 李培霖, 颜丙峰. 煤油共处理中原料油结构对供氢性能影响研究[J]. 洁净煤技术,2015,21(3):83−87+92.

    WANG Guang-yao, ZHANG Xiao-jing, CHEN Gui-feng, LI Pei-lin, YAN Bing-feng. Influence of raw oil structure on hydrogen donation capacity during coal oil co-processing[J]. Clean Coal Technol,2015,21(3):83−87+92.
    [10] 洪琨, 马凤云, 钟梅, 刘景梅, 莫文龙. 渣油重组分沥青质结构分析及其对临氢热反应过程生焦的影响[J]. 燃料化学学报,2016,44(3):357−365. doi: 10.3969/j.issn.0253-2409.2016.03.014

    HONG Kun, MA Feng-yun, ZHONG Mei, LIU Jing-mei, MO Wen-long. Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking[J]. J Fuel Chem Technol,2016,44(3):357−365. doi: 10.3969/j.issn.0253-2409.2016.03.014
    [11] 张德祥, 高晋生, 朱之培. 年青煤在石油重油中加氢液化的研究[J]. 华东理工大学学报,1986,12(3):46−55.

    ZHANG De-xiang, GAO Jin-sheng, ZHU Zhi-pei. The liquefaction of some Chinese low rank coals by hydrogenation in various heavy oils of petroleum[J]. J East Chin Univ Sci Technol,1986,12(3):46−55.
    [12] 高晋生, 张佩芳, 孙培桦, 杭月珍, OELERT H H. 中国年轻煤加氢液化研究Ⅲ. 兖州煤的加氢液化[J]. 燃料化学学报,1988,16(4):321−327.

    GAO Jin-sheng, ZHANG Pei-fang, SUN Pei-hua, HANG Yue-zhen, OELERT H H. Investigation on the hydroliquefaction of chinese low rank coals Ⅲ. Examination on the liquefaction of Yanzhou coal[J]. J Fuel Chem Technol,1988,16(4):321−327.
    [13] 阎瑞萍, 朱继升, 杨建丽, 刘振宇. 兖州煤与大庆减压渣油在共处理过程中的相互作用Ⅰ. 共处理对转化率及产物分布的影响[J]. 燃料化学学报,2000,28(6):527−532. doi: 10.3969/j.issn.0253-2409.2000.06.010

    YAN Rui-ping, ZHU Ji-sheng, YANG Jian-li, LIU Zhen-yu. Interaction between a bituminous coal and a paraffinic petroleum residue in coprocessing Ⅰ. Effect of compressing conditions on conversion and products distribution[J]. J Fuel Chem Technol,2000,28(6):527−532. doi: 10.3969/j.issn.0253-2409.2000.06.010
    [14] 黄澎, 李文博, 毛学锋, 马博文. 热解重油加氢裂化制取高芳潜石脑油的研究[J]. 燃料化学学报,2019,47(11):1329−1336. doi: 10.3969/j.issn.0253-2409.2019.11.007

    HUANG Peng, LI Wen-bo, MAO Xue-feng, MA Bo-wen. Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking[J]. J Fuel Chem Technol,2019,47(11):1329−1336. doi: 10.3969/j.issn.0253-2409.2019.11.007
    [15] 陶义. 不同来源渣油的加氢及生焦特性研究[D]. 青岛: 中国石油大学(华东), 2017.

    TAO Yi. Study on different residue hydrotreating and coking characteristics[D]. Qingdao: China University of Petroleum (East China), 2017.
    [16] 方正美, 吕海燕, 张媛媛, 宁奕飞, 潘铁英, 张德祥. 溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响[J]. 燃料化学学报,2019,47(8):907−914. doi: 10.3969/j.issn.0253-2409.2019.08.002

    FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. J Fuel Chem Technol,2019,47(8):907−914. doi: 10.3969/j.issn.0253-2409.2019.08.002
    [17] 董明, 龙军, 王子军, 侯焕娣, 王威. 沥青质临氢热裂化转化规律初步研究[J]. 石油加工,2015,31(3):643−649.

    DONG Ming, LONG Jun, WANG Zijun, HOU Huandi, WANG Wei. Preliminary investigation on behaviors of thermal conversion of asphaltene in the presence of hydrogen and catalyst[J]. Acta Pet Sin (Pet Process Sect),2015,31(3):643−649.
    [18] 仝配配, 王子军. 石油加工过程中焦炭形 成的原因、类型及影响因素[J]. 化工进展,2016,35(S1):101−108.

    TONG Pei-pei, WANG Zi-jun. Causes, types and influencing factors of coke formation in petroleum processing[J]. Chem Ind Eng Prog,2016,35(S1):101−108.
    [19] 王蕴, 王卫平, 王鹏飞, 吴治国. 原料油对油煤共炼反应结果影响的研究[J]. 石油炼制与化工,2016,47(5):6−11. doi: 10.3969/j.issn.1005-2399.2016.05.002

    WANG Yun, WANG Wei-ping, WANG Peng-fei, WU Zhi-guo. Influence of oils on oil-coal co-processing[J]. Pet Process Petrochem,2016,47(5):6−11. doi: 10.3969/j.issn.1005-2399.2016.05.002
    [20] 高山松, 张德祥, 李克健. 中温煤焦油与新疆黑山煤共处理的研究[J]. 煤炭转化,2015,38(2):40−44. doi: 10.3969/j.issn.1004-4248.2015.02.010

    GAO Shan-song, ZHANG De-xiang, LI Ke-jian. Study on co-processing of Xinjiang Heishan coal with medium temperature coal tar[J]. Coal Convers,2015,38(2):40−44. doi: 10.3969/j.issn.1004-4248.2015.02.010
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  81
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回