留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤气化渣脱除燃煤烟气中汞的性能研究

高春新 井云环 陈慧君 樊盼盼 王建成 常丽萍 鲍卫仁

高春新, 井云环, 陈慧君, 樊盼盼, 王建成, 常丽萍, 鲍卫仁. 煤气化渣脱除燃煤烟气中汞的性能研究[J]. 燃料化学学报, 2021, 49(4): 455-464. doi: 10.1016/S1872-5813(21)60041-5
引用本文: 高春新, 井云环, 陈慧君, 樊盼盼, 王建成, 常丽萍, 鲍卫仁. 煤气化渣脱除燃煤烟气中汞的性能研究[J]. 燃料化学学报, 2021, 49(4): 455-464. doi: 10.1016/S1872-5813(21)60041-5
GAO Chun-xin, JING Yun-huan, CHEN Hui-jun, FAN Pan-pan, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Performance of Hg0 removal from coal-fired flue gas over coal gasification slag[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 455-464. doi: 10.1016/S1872-5813(21)60041-5
Citation: GAO Chun-xin, JING Yun-huan, CHEN Hui-jun, FAN Pan-pan, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Performance of Hg0 removal from coal-fired flue gas over coal gasification slag[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 455-464. doi: 10.1016/S1872-5813(21)60041-5

煤气化渣脱除燃煤烟气中汞的性能研究

doi: 10.1016/S1872-5813(21)60041-5
基金项目: 国家能源集团煤制油研究院技术([2020]010)和国家重点研发项目(2019YFC1904300)资助
详细信息
    作者简介:

    高春新:(18395588663@163.com)

    通讯作者:

    Tel: 13834629730,E-mail: wangjiancheng@tyut.edu.cn

  • #: 高春新和井云环贡献相同
  • 中图分类号: X511

Performance of Hg0 removal from coal-fired flue gas over coal gasification slag

Funds: The project was supported by the CHN Energy Coal-to-oil Research Institute Technology ([2020]010) and the National Key Research and Development Program of China (2019YFC1904300)
  • 摘要: 汞作为一种重金属污染物,对环境和人体健康影响很大,如何对其高效脱除已引起了研究者的广泛关注。本研究使用煤气化渣及其分选后样品作为脱汞吸附剂,通过固定床和气流床脱汞实验考察了吸附剂的脱汞性能,利用N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)等表征手段分析了吸附剂的物化特性。固定床脱汞评价结果显示,OS和HCS在60−120 ℃保持91%以上的脱汞效率;HAS在60 ℃有最高97%的脱汞效率,HAS的脱汞活性受脱汞温度影响较大。Hg-TPD和XPS表征结果表明,吸附剂中的化学吸附氧参与了汞的氧化,在吸附剂表面生成HgO。气流床脱汞评价结果表明,OS和HCS在碳汞比为40000,脱汞温度为60 ℃时,脱汞效率分别为56%、57%;当碳汞比为80000,脱汞温度为60 ℃时,脱汞效率分别为100%、82%。
    1)  #: 高春新和井云环贡献相同
  • FIG. 609.  FIG. 609.

    FIG. 609..  FIG. 609.

    图  1  气流床脱汞活性评价装置示意图

    Figure  1.  Schematic of entrained bed system for Hg0 removal

    图  2  N2吸附-脱附曲线和孔径分布

    Figure  2.  N2 adsorption-desorption curves and pore size distributions of samples

    图  3  样品的XRD谱图

    Figure  3.  XRD patterns of samples

    图  4  样品的SEM照片和能谱谱图

    Figure  4.  SEM image and EDS of samples (a): OS; (b): HCS; (c): HAS

    图  5  温度对吸附剂脱汞活性的影响

    Figure  5.  Effect of temperature on Hg0 removal efficiency over sorbents

    (N2 + 4% O2, GHSV = 1.0 × 105 h−1, (a): t = 60 ℃; (b): t = 90 ℃; (c): t = 120 ℃; (d): t = 150 ℃)

    图  6  吸附剂脱汞前后O 1s 及吸附剂脱汞后Hg 4f XPS谱图

    Figure  6.  O 1s XPS spectra of fresh and used sorbents and Hg 4f XPS spectra of used sorbents

    (conditions for removal of Hg0: N2 + 4% O2, GHSV = 1.0 × 105 h−1, t = 60 ℃)

    图  7  使用后吸附剂的Hg-TPD谱图

    Figure  7.  Hg-TPD curves of used sorbents

    (conditions for removal of Hg0: N2 + 4% O2, GHSV = 1.0 × 105 h−1, t = 60 ℃)

    图  8  吸附剂的脱汞活性

    Figure  8.  Hg0 removal efficiency of sorbents

    (initial Hg0 concentration: 9.5 μg/m3, air + 25 L/min N2, θ = 40000, (a): OS; (b): HCS)

    图  9  吸附剂脱汞活性

    Figure  9.  Hg0 removal efficiency of sorbents

    (initial Hg0 concentration: 9.5 μg/m3, air + 25 L/min N2, θ = 80000, (a): OS; (b): HCS)

    图  10  不同反应器下的脱汞效率

    Figure  10.  Hg0 removal efficiency at different reactors

    (reaction conditions of the fix-bed reactor: t = 120 ℃, N2 + 4% O2, GHSV = 1.0 × 105 h−1; the reaction conditions of entrained flow reactor: t = 120 ℃, initial Hg0 concentration: 9.5 μg/m3, air + 25 L/min N2, θ = 40000, the residence time is 2.0 s)

    表  1  样品的工业分析和元素分析

    Table  1.   Proximate and ultimate analyses of samples

    SampleProximate analysis w/%Ultimate analysis wad/%
    MadAadVadVdafCHO*NS
    OS0.4772.362.659.7524.220.321.980.130.52
    HCS0.7112.662.993.4582.440.293.060.540.30
    HAS0.1593.441.4622.774.170.050.030.40
    *:by difference
    下载: 导出CSV

    表  2  样品的孔结构参数

    Table  2.   Surface areas and pore structure parameters of samples

    SampleBET surface area
    /(m2·g−1)
    t-plot micropore area
    /(m2·g−1)
    Total pore volume
    /(cm3·g−1)
    t-plot micropore volume
    /(cm3·g−1)
    Average pore diameter
    /nm
    OS223.179.90.30.14.5
    HCS787.8439.90.90.25.5
    HAS3.52.27.9
    下载: 导出CSV

    表  3  基于XPS光谱计算的吸附剂表面元素含量

    Table  3.   Content of surface elements of sorbents calculated based on the XPS spectra

    SampleAtomic content w/%Relative content w/%
    COFeSHgOαOβOγ
    Fresh OS28.3269.891.310.4813.7364.3321.94
    Used OS30.2667.841.230.450.2215.8858.5425.58
    Fresh HCS84.1414.740.700.423.176.7890.05
    Used HCS86.4212.250.650.430.254.963.7391.31
    Fresh HAS9.4488.421.530.616.5123.9269.57
    Used HAS13.8883.841.460.690.136.0920.5873.33
    下载: 导出CSV
  • [1] LI P, FENG X B, QIU G L, SHANG L H, LI Z G. Mercury pollution in Asia: a review of the contaminated sites[J]. J Hazard Mater,2009,168(2):591−601.
    [2] GB 13223—2011, 火电厂大气污染物排放标准[S].

    GB 13223—2011, Emission standard of air pollutants for thermal power plants[S].
    [3] CHI Y, YAN N Q, QU Z, QIAO S H, JIA J P. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas[J]. J Hazard Mater,2009,166(2/3):776−781. doi: 10.1016/j.jhazmat.2008.11.130
    [4] YANG Z Q, LI H L, YANG J P, FENG S H, LIU X, ZHAO J X, QU W Q, LI P, FENG Y, LEE P H, SHIH K. Nanosized copper selenide functionalized zeolitic imidazolate framework-8 (CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Adv Funct Mater,2019,29(17):1807191.
    [5] 柏建华, 达胜富, 刘睿, 刘吉祥, 魏健鹏. 燃煤电厂烟气脱汞技术研究进展[J]. 甘肃科技,2017,33(15):46−52. doi: 10.3969/j.issn.1000-0952.2017.15.016

    BO Jian-hua, DA Sheng-fu, LIU Rui, LIU Ji-xiang, WEI Jian-peng. Research progress of flue gas mercury removal technology in coal-fired power plant[J]. Gansu Sci Technol,2017,33(15):46−52. doi: 10.3969/j.issn.1000-0952.2017.15.016
    [6] 周强, 段钰锋, 冒咏秋, 朱纯. NH4Cl改性活性炭脱除气态Hg0的特性分析[J]. 化工进展,2018,37(10):4068−4073.

    ZHOU Qiang, DUAN Yu-feng, MAO Yong-qiu, ZHU Chun. Gaseous Hg0 removal by NH4Cl modified activated carbon[J]. Chem Ind Eng Prog,2018,37(10):4068−4073.
    [7] HONG D Y, ZHOU J S, HU C X, ZHOU Q X, MAO J Z, QIN Q W. Mercury removal mechanism of AC prepared by one-step activation with ZnCl2[J]. Fuel,2019,235:326−335. doi: 10.1016/j.fuel.2018.07.103
    [8] WANG T, LIU J, ZHANG Y S, ZHANG H C, CHEN W Y, NORRIS P, PAM W P. Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal[J]. Chem Eng J,2018,331:536−544. doi: 10.1016/j.cej.2017.09.017
    [9] 曲江山, 张建波, 孙志刚, 杨晨年, 史达, 李少鹏, 李会泉. 煤气化渣综合利用研究进展[J]. 洁净煤技术,2020,26(1):184−193.

    QU Jiang-shan, ZHANG Jian-bo, SUN Zhi-gang, YANG Chen-nian, SHI Da, LI Shao-peng, LI Hui-quan. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technol,2020,26(1):184−193.
    [10] HAN F, GAO Y C, HUO Q H, HAN L. Characteristics of vanadium-based coal gasification slag and the NH3-selective catalytic reduction of NO[J]. Catalysts, 2018, 8(8): 327.
    [11] 高艳春, 韩芳, 韩丽娜, 常丽萍, 鲍卫仁, 王建成. V/CGS低温NH3-SCR催化剂的制备及性能研究[J]. 现代化工,2020,40(8):67−72.

    GAO Yan-chun, HAN Fang, HAN Li-na, CHANG Li-ping, BAO Wei-ren, WANG Jian-cheng. Preparation of V/CGS catalyst for low temperature NH3-SCR and study on its activities[J]. Mod Chem Ind,2020,40(8):67−72.
    [12] CHEN H J, HUO Q H, WANG Y H, HAN L N, LEI Z P, WANG J C, BAO W R, CHANG L P. Upcycling coal liquefaction residue into sulfur-rich activated carbon for efficient Hg0 removal from coal-fired flue gas[J]. Fuel Process Technol,2020,206:106467. doi: 10.1016/j.fuproc.2020.106467
    [13] HUO Q H, WANG Y H, CHEN H J, HAN L N, WANG J C, BAO W R, CHANG L P, XIE K C. ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal[J]. Fuel Process Technol,2019,191:36−43. doi: 10.1016/j.fuproc.2019.03.025
    [14] 辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009.

    XIN Qin, LUO Meng-fei. Morden Catalytic Research Methods[M]. Beijing: Science Press, 2009.
    [15] ZHAO X L, ZENG C, MAO Y Y, LI W H, PENG Y, WANG T, EITENEER B, ZAMANSKY V, FLETCHER T H. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy Fuels,2010,24(1):91−94. doi: 10.1021/ef9005065
    [16] 孟素丽, 段钰锋, 黄治军, 王运军, 杨立国. 燃煤飞灰吸附气态汞影响因素的试验研究[J]. 动力工程学报,2009,29(5):487−491. doi: 10.3321/j.issn:1000-6761.2009.05.016

    MENG Su-li, DUAN Yu-feng, HUANG Zhi-jun, WANG Yun-jun, YANG Li-guo. Experimental study on factors influencing adsorption of mercury vapor by coal-fired fly ash[J]. J Chin Soc Power Eng,2009,29(5):487−491. doi: 10.3321/j.issn:1000-6761.2009.05.016
    [17] ZHU Y C, HAN X J, HUANG Z G, HOU Y Q, GUO Y P, WU M H. Superior activity of CeO2 modified V2O5/AC catalyst for mercury removal at low temperature[J]. Chem Eng J,2018,337:741−749. doi: 10.1016/j.cej.2017.10.115
    [18] YANG S, WANG D L, LIU H, LIU C, XIE X F, XU Z F, LIU Z L. Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: Copper polysulfide modification[J]. Chem Eng J,2019,358:1235−1242. doi: 10.1016/j.cej.2018.10.134
    [19] ZHAO L K, LI C T, ZHANG J, ZHANG X N, ZHAN F M, MA J F, XIE Y E, ZENG G M. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel,2015,153:361−369. doi: 10.1016/j.fuel.2015.03.001
    [20] YU D Q, LIU Y, WU Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catal Commun,2010,11(8):788−791. doi: 10.1016/j.catcom.2010.02.016
    [21] TAO S S, LI C T, FAN X P, ZENG G M, LU P, ZHANG X, WEN Q B, ZHAO W W, LUO D Q, FAN C Z. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas[J]. Chem Eng J,2012,210:547−556. doi: 10.1016/j.cej.2012.09.028
    [22] LI H L, ZHU L, WANG J, LI L Q, SHIH K. Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas[J]. Environ Sci Technol,2016,50(17):9551−9557. doi: 10.1021/acs.est.6b02115
    [23] WU S J, UDDIN M A, NAGANO S, OZAKI M, SASAOKA E. Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry[J]. Energy Fuels,2011,25(1):144−153. doi: 10.1021/ef1009499
    [24] HAN Z X, GUO Y X, YANG W, TANG R, WANG H, WU S J. Removal of mercury from flue gases over iron modified activated carbon made by in situ ion exchange method[J]. J Energy Inst,2020,93(4):1411−1418. doi: 10.1016/j.joei.2020.01.003
    [25] 周强, 段钰锋, 洪亚光, 朱纯, 佘敏, 韦红旗. 模拟烟气活性炭喷射脱汞实验研究[J]. 中国电机工程学报,2013,33(35):36−43.

    ZHOU Qiang, DUAN Yu-feng, HONG Ya-guang, ZHU Chun, SHE Min, WEI Hong-qi. Experimential study on mercury capture using activated carbon injection in simulated flue gas[J]. Proc CSEE,2013,33(35):36−43.
    [26] 丁建东, 陈博, 刁永发, 沈恒银, 石健. 碳汞比对燃煤烟气中Hg脱除影响的实验研究[J]. 环境工程,2012,30(1):58−61.

    DING Jian-dong, CHEN Bo, DIAO Yong-fa, SHEN Heng-yin, SHI Jian. The experimental study on the influence of C/Hg ratio on removal of elemental mercury in simulated flue gas[J]. Environ Eng,2012,30(1):58−61.
    [27] CHEN Y, LIU H, GUO X, WU F, ZHAO Y C, ZHANG J Y. Performance of CuCl2-modified activated carbon on mercury capture after injection in an entrained flow reactor[J]. Ind Eng Chem Res,2020,59(13):5557−5565. doi: 10.1021/acs.iecr.9b06189
    [28] 王永兴, 黄亚继, 董璐, 袁琦, 丁守一, 程好强, 王圣, 段钰锋. Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究[J]. 燃料化学学报,2020,48(7):785−794.

    WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent[J]. J Fuel Chem Technol,2020,48(7):785−794.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-21
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回