留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载型过渡金属氧化物催化剂催化分解臭氧性能研究

鹿靖麟 王胜 赵琨 王婷 倪长军 汪明哲 王树东

鹿靖麟, 王胜, 赵琨, 王婷, 倪长军, 汪明哲, 王树东. 负载型过渡金属氧化物催化剂催化分解臭氧性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60044-0
引用本文: 鹿靖麟, 王胜, 赵琨, 王婷, 倪长军, 汪明哲, 王树东. 负载型过渡金属氧化物催化剂催化分解臭氧性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60044-0
LU Jing-lin, WANG Sheng, ZHAO Kun, WANG Ting, NI Chang-jun, WANG Ming-zhe, WANG Shu-dong. Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60044-0
Citation: LU Jing-lin, WANG Sheng, ZHAO Kun, WANG Ting, NI Chang-jun, WANG Ming-zhe, WANG Shu-dong. Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60044-0

负载型过渡金属氧化物催化剂催化分解臭氧性能研究

doi: 10.1016/S1872-5813(21)60044-0
基金项目: 国家自然科学基金(21676267)、国家重点研发计划(2016YFC0204302)和大连化物所创新研究基金项目(DICPI201937)资助
详细信息
    作者简介:

    鹿靖麟:lujinglin0531@163.com

    通讯作者:

    E-mail: wangsheng@dicp.ac.cn

  • 中图分类号: TQ423.93

Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition

Funds: The project was supported by the National Natural Science Foundation of China (U20A20132), the National Key Research and Development Plan (2016YFC0204302) and the Innovation Research Fund Project of Dalian Institute of Physics (DICPI201937)
  • 摘要: 通过浸渍法制备了γ-Al2O3负载镍、锰、钴等不同金属氧化物催化剂,在25 ℃、200, 000 mL·gcat−1·h−1的空速条件下,研究了其臭氧催化分解性能。结果表明10wt.%NiO/γ-Al2O3催化剂催化活性最佳,20小时内臭氧转化率高于96%。借助XRD、XPS、TEM、SEM-EDS、H2-TPR等表征手段,揭示出在NiO/γ-Al2O3催化剂表面形成的镍铝尖晶石结构可能是其优良臭氧分解性能的内在原因。此外,揭示出在不同过渡金属氧化物负载型催化剂上臭氧分解机理不同,相关研究为镍、锰等过渡金属氧化物催化剂催化分解臭氧的反应机理提供了新思路,并为开发高效的臭氧分解催化剂提供了指导。
  • 图  1  催化臭氧分解工艺流程图

    Figure  1.  A flow diagram of ozone catalytic decomposition

    图  2  不同催化剂的臭氧分解性能

    Figure  2.  The performance of Ozone decomposition over different catalysts

    图  3  不同催化剂的XRD谱图

    Figure  3.  XRD patterns of different catalysts

    图  4  三种催化剂的扫描电镜图

    Figure  4.  SEM and EDS images of three catalysts

    (a), (b): Ni-Al; (c), (d): Mn-Al; (e), (f): Co-Al

    图  5  催化剂10% MOx/γ-Al2O3的透射电镜图

    Figure  5.  TEM image of 10% MOx/γ-Al2O3

    (a), (e): Ni-Al; (b): Mn-Al; (c), (d): Co-Al

    图  6  不同催化剂的H2-TPR和O2-TPD谱图

    Figure  6.  Redox properties of different catalysts

    (a): H2-TPR; (b): O2-TPD

    图  7  反应前后三种催化剂的XPS谱图

    Figure  7.  XPS spectrum of fresh and used catalysts

    (a): Ni 2p3/2 of Ni-Al; (b): Mn 2p3/2 of Mn-Al; (c): Co 2p3/2 of Co-Al

    图  8  新鲜和反应后催化剂表面元素组成

    Figure  8.  Surfaces composition on fresh and used catalysts

    表  1  不同催化剂的理化结构参数

    Table  1.   Texture properties of different catalysts

    SamplesSBET/m2·g−1Pore volume/cm3g−1Pore diameter/nm
    γ-Al2O32020.3344.34
    Ni-Al1750.2934.34
    Mn-Al1770.2924.34
    Co-Al1680.2684.33
    Fe-Al1800.274.33
    Cu-Al1750.274.33
    下载: 导出CSV

    表  2  钴氧化物负载型催化剂元素分析

    Table  2.   Elemental distributions over the Co-Al catalyst

    ElementWeight%Atomic%
    S1S2S1S2
    O40.4633.0253.8950.07
    Al57.4045.8845.3441.25
    Co2.1421.100.778.68
    下载: 导出CSV

    表  3  镍氧化物负载型催化剂元素分析

    Table  3.   Elemental distributions over the Ni-Al catalyst

    ElementWeight%Atomic%
    S1S2S1S2
    O46.6141.8961.3756.48
    Al46.1551.3136.0341.02
    Ni7.256.792.62.5
    下载: 导出CSV
  • [1] BERNSTEIN J A, ALEXIS N, BACCHUS H. The health effects of nonindustrial indoor air pollution[J]. J. Allergy Clin, Immunol,2008,121:585−591. doi: 10.1016/j.jaci.2007.10.045
    [2] BERNSTEIN J A, ALEXIS N, BARNES C. Health effects of air pollution[J]. J. Allergy Clin, Immunol,2004,114:1116−1123. doi: 10.1016/j.jaci.2004.08.030
    [3] ATKINSON R. Atmospheric chemistiy of VOCs and NOx[J]. Atmos. Environ.,2000,34:2063−2101. doi: 10.1016/S1352-2310(99)00460-4
    [4] SAAKE B, LEHNEN R, SCHMEKAL E. Bleaching of formacell pulp from aspen wood with ozone and preacetic acid in organic solvents[J]. Holzforschung,1998,52:643−650. doi: 10.1515/hfsg.1998.52.6.643
    [5] CAMEL V, BERMOND A. The use of ozone processes in drinking water treatment[J]. Wat. Res,1998,32:3208−3222. doi: 10.1016/S0043-1354(98)00130-4
    [6] ZEYNEP B, ANNEL K G, SEYDIM A C. Use of ozone in the food industiy[J]. Lwt - Food Sci. Technol,2004,37:453−460. doi: 10.1016/j.lwt.2003.10.014
    [7] L. T. CHANG, G. B. HONG, S. P. WENG, et al. Indoor ozone levels, houseplants and peak expiratory flow rates among healthy adults in Taipei, Taiwan[J]. Environ Int,2019,:231−236.
    [8] C. J. WESCHLER. Chemistry in indoor environments: 20 years of research[J]. Indoor Air,2011,3:205−18.
    [9] C. J. WESCHLER. Ozone in Indoor Environments: Concentration and Chemistry[J]. Indoor Air,2000,10:269−288. doi: 10.1034/j.1600-0668.2000.010004269.x
    [10] M. A. 谢甫钦柯. 臭氧化法水处理工艺学[M]. 清华大学出版社, 1987年第一版.
    [11] A. E. AXWORTHY AND S. W. BENSON. Mechanism of gas phase decomposition of ozone. Thermal and photochemical reactions[J]. 1959, 388-397.
    [12] Y. WANG, H. ARANDIYAN, J. SCOTT. Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review[J]. J. Mater. Chem. A,2017,19:8825−8846.
    [13] S. CAO, F. F. TAO, Y. TANG. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts[J]. Chem Soc Rev,2016,17:4747−65.
    [14] Z. CHEN, Z. JIAO, D. PAN. Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure[J]. Chem Rev,2012,7:3833−55.
    [15] J. SHI. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts[J]. Chem Rev,2013,3:2139−2181.
    [16] K. A. STOERZINGER, M. RISCH, B. HAN. Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics[J]. ACS Catalysis,2015,10:6021−6031.
    [17] W. TANG, G. LIU, D. LI. Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs[J]. Sci. Sin. Chim.,2015,9:1359−1366.
    [18] QUANWEI YU, HAO PAN, MING ZHAO, ZHIMIN LIU, JIANLI WANG, YAOQIANG CHEN, MAOCHU GONG. Influence of calcination temperature on the performance of Pd–Mn/SiO2–Al2O3 catalysts for ozone decomposition[J]. J. Hazard. Mater.,2009,172:631−634. doi: 10.1016/j.jhazmat.2009.07.040
    [19] Dhandapani, Raghavan S. Probabilistic and topological methods in computational geometry[D]. US: New York University, 2010.
    [20] S. IMAMURA, M. IKEBATA, T. ITO. Decomposition of ozone on a silver catalyst[J]. Ind. Eng. Chem. Res.,1991,30(1):217−221. doi: 10.1021/ie00049a033
    [21] R. RADHAKRISHNAN, S. T. OYAMA. Electron transfer effects in ozone decomposition on supported manganese oxide[J]. J Phys Chem B,2001,:4245−4253.
    [22] S. Y. GONG, J. Y. CHEN, X. F. WU. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition[J]. Catal Commun,2018,106:25−29. doi: 10.1016/j.catcom.2017.12.003
    [23] R. RADHAKRISHNAN, S. T. OYAMA. Ozone decomposition over manganese oxide supported on ZrO2 and TiO2: A kinetic study using in situ laser raman spectroscopy[J]. J Catal,2001,199(2):282−290. doi: 10.1006/jcat.2001.3167
    [24] C. DAN, E. J. POPOVICI, F. IMRE, E. INDREA, P. MARGINEAN, I. SILAGHI-DUMITRESCU. Studies on some ozone decomposition catalysts based on nickel oxide[J]. Stud. Univ. Babes-Bolyai Chem.,2007,52(1):91−95.
    [25] R. R. CAO, P. Y. ZHANG, Y. LIU. Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition[J]. Applied Surface Science,2019,495:143607. doi: 10.1016/j.apsusc.2019.143607
    [26] R. RADHAKRISHNAN, S. T. OYAMA. Electron transfer effects in ozone decomposition on supported manganese oxide[J]. Journal of Physical Chemistry B,2001,:4245−4253.
    [27] MARZIEHOSSADAT, SHOKROLLAHI YANCHESHMEH, OMMOLBANIN ALIZADEH SAHRAEI, MUSTAPHA AISSAOUI, MARIA C. ILIUTA. A novel synthesis of NiAl2O4 spinel from a Ni-Al mixed-metal alkoxide as a highly effcient catalyst for hydrogen production by glycero lsteam reforming[J]. Appl. Catal., B,2020,265:118535. doi: 10.1016/j.apcatb.2019.118535
    [28] YAJIE YANG. The effffect of tungsten doping on the catalytic activity of α-MnO2 nanomaterial for ozone decomposition under humid condition[J]. Appl. Catal., A,2018,562:132−141. doi: 10.1016/j.apcata.2018.06.006
    [29] GUOFENG ZHANG. Facile fabrication of Al2O3-doped Co3O4/graphene nanocomposites for high performance asymmetric supercapacitors[J]. Appl. Surf. Sci,2019,493:55−62. doi: 10.1016/j.apsusc.2019.06.288
    [30] PETZOLD F G, JASINSKI J, CLARK E L, KIM J H, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today,2012,198(1):219−227. doi: 10.1016/j.cattod.2012.05.030
    [31] GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHI M M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A: Gen,2016,514:182−191. doi: 10.1016/j.apcata.2015.12.025
    [32] T. MISHRA, P. MOHAPATRA AND K. M. PARIDA. SYNTHESIS. Characterisation and catalytic evaluation of iron–manganese mixed oxide pillared clay for VOC decomposition reaction[J]. Appl. Catal., B,2008,:279−285.
    [33] ANDRÉVON HELD SOARES. PLATINUM. Palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming[J]. Appl. Phys. A,2017,548:179−190.
    [34] ALEKSANDR V. FEDOROV. Temperature-programmed reduction of model CuO, NiO and mixed CuO–NiO catalysts with hydrogen[J]. J. Alloys Compd,2020,844:156135. doi: 10.1016/j.jallcom.2020.156135
    [35] J. CHEN, X. CHEN, X. CHEN. Homogeneous introduction of CeO y into MnOx -based catalyst for oxidation of aromatic VOCs[J]. Appl. Catal., B,2018,:825−835.
    [36] JINGBO JIA, PENGYI ZHANG AND LONG CHEN. The effect of morphology of α-MnO2 on catalytic decomposition of gaseous ozone[J]. Catal. Sci. Technol.,2016,6:5841. doi: 10.1039/C6CY00301J
    [37] YANG GAO, SHENG WANG, LIRONG LV, DEYI LI, XU YUE, SHUDONG WANG. Insights into the behaviors of the catalytic combustion of propane over spinel catalysts[J]. Catal Letters,2020,150:3617−3625. doi: 10.1007/s10562-020-03239-3
    [38] G. ERTL, R. HIERL, H. KNÖZINGER, N. THIELE, H. P. URBACH. XPS study of copper aluminate catalysts[J]. Appl Sci,1980,5(1):49−64.
    [39] S. KASZTELAN, J. GRIMBLOT, J. P. BONNELLE, E. PAYEN, H. TOULHOAT, Y. JACQUIN. Preparation of Co-Mo-γ-Al2O3 and Ni-Mo-γ-Al2O3 catalysts by phregulation of molybdenum solution. characterization of supported species and hydrogenation activities[J]. Appl Catal,1983,7(1):91−112. doi: 10.1016/0166-9834(83)80241-3
    [40] R. O. ANSELL, T. DICKINSON, A. F. POVEY. An X-ray photo-electron spectroscopic study of the films on coloured stainless steel and coloured ‘Nilomag’ alloy 771[J]. Corros Sci,1978,18(3):245−256. doi: 10.1016/S0010-938X(78)80021-3
    [41] J. C. CARVER, G. K. SCHWEITZER. Use of X‐ray photoelectron spectroscopy to study bonding in Cr, Mn, Fe, and Co compounds[J]. J. Chem. Phys,1972,57:973. doi: 10.1063/1.1678348
    [42] N. S. MCINTYRE, D. D. JOHNSTON, L. L. COATSWORTH, R. D. DAVIDSON, J. R. BROWN. X‐ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J]. J. Chem. Phys,1990,15(4):265−272.
    [43] YASUAKI, OKAMOTO, TOSHINOBU, IMANAKA, SHIICHIRO, TERANISHI. Surface structure of CoO-MoO3-Al2O3 catalysts studied by X-ray photoelectron spectroscopy[J]. J Catal,1980,65(2):448−460. doi: 10.1016/0021-9517(80)90322-X
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回