留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤热解挥发分在活性炭上的积炭行为及其过程分析

靳鑫 王倩 李晓荣 李挺 王美君 孔娇 闫伦靖 常丽萍 王建成 鲍卫仁

靳鑫, 王倩, 李晓荣, 李挺, 王美君, 孔娇, 闫伦靖, 常丽萍, 王建成, 鲍卫仁. 煤热解挥发分在活性炭上的积炭行为及其过程分析[J]. 燃料化学学报(中英文), 2021, 49(5): 609-616. doi: 10.1016/S1872-5813(21)60047-6
引用本文: 靳鑫, 王倩, 李晓荣, 李挺, 王美君, 孔娇, 闫伦靖, 常丽萍, 王建成, 鲍卫仁. 煤热解挥发分在活性炭上的积炭行为及其过程分析[J]. 燃料化学学报(中英文), 2021, 49(5): 609-616. doi: 10.1016/S1872-5813(21)60047-6
JIN Xin, WANG Qian, LI Xiao-rong, LI Ting, WANG Mei-jun, KONG Jiao, YAN Lun-jing, CHANG Li-ping, WANG Jian-cheng, BAO Wei-ren. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 609-616. doi: 10.1016/S1872-5813(21)60047-6
Citation: JIN Xin, WANG Qian, LI Xiao-rong, LI Ting, WANG Mei-jun, KONG Jiao, YAN Lun-jing, CHANG Li-ping, WANG Jian-cheng, BAO Wei-ren. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 609-616. doi: 10.1016/S1872-5813(21)60047-6

煤热解挥发分在活性炭上的积炭行为及其过程分析

doi: 10.1016/S1872-5813(21)60047-6
基金项目: 国家重点研发计划(2016YFB0600302)和国家自然科学基金(22078224)资助
详细信息
    作者简介:

    靳鑫:jinxin0916@126.com

    通讯作者:

    E-mail:wangmeijun@tyut.edu.cn

    lpchang@tyut.edu.cn

  • 中图分类号: TQ530.2

Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600302) and the National Natural Science Foundation of China (22078224)
  • 摘要: 中低温热解煤焦油存在重质组分含量高、焦油品质差等问题,通过引入催化剂原位调控热解挥发分的反应,可有效改善焦油品质,但催化剂易积炭失活,影响其持续使用时间。利用下行床连续热解反应器,研究了挥发分在活性炭催化剂上的积炭行为,通过改变进煤时间(30、60和100 min),考察了挥发分的反应及其在活性炭上形成积炭的过程机制。结果表明,挥发分反应在活性炭上形成了大量积炭,随着进料时间的延长,活性炭上积炭的绝对量增加,但积炭形成的速率降低,因此,对于干基煤积炭的产率减小。随着活性炭上积炭量增加,活性炭的比表面积显著减小,催化裂解活性降低,焦油产率以及其中的沥青产率均有增大。焦油的组成分析表明,随着进料时间的延长,含氧化合物的相对含量增加,C−O弱键的断裂被抑制,这也使得积炭形成速率有所降低。
  • FIG. 651.  FIG. 651.

    FIG. 651.  FIG. 651.

    图  1  下行床煤热解反应装置示意图

    Figure  1  Schematic diagram of the experimental apparatus

    1-feeder; 2-quartz reactor; 3-furnace; 4-gas flowmeter; 5-preheating furnace; 6-condenser pipe; 7-condenser; 8-collection bottle; 9-U glass tube; 10-absorption bottle; 11-absorbent cotton filter; 12-wet gas flowmeter; 13-polymeter filter; 14-desiccant; 15-Raman laser gas analyzer

    图  2  NMH煤热解产物的分布

    Figure  2  Product distribution of NMH coal during pyrolysis

    (Coke: the sum of Coke-S, Coke-C and Coke-D)

    图  3  NMH煤热解积炭的分布

    Figure  3  Coke distribution of NMH coal pyrolysis

    图  4  NMH煤热解气体的产率

    Figure  4  Yield of NMH coal pyrolysis gas

    图  5  两种活性炭的红外光谱谱图

    Figure  5  FT-IR spectra of AC-1 and AC-2

    图  6  不同进料时间下NMH煤的热解产物分布

    Figure  6  Pyrolysis product distribution of NMH coal at different feed time

    图  7  不同进料时间下NMH煤热解的积炭分布

    Figure  7  Coke distribution of NMH coal pyrolysis at different feed time

    图  8  不同进料时间下NMH煤热解焦油的馏分产率

    Figure  8  Fraction yield of tar at different feed time

    图  9  不同进料时间下NMH煤热解焦油轻重组分的产率

    Figure  9  The light and heavy fraction yield of tar at different feed time

    图  10  不同进料时间下NMH煤热解焦油的组成分布

    Figure  10  Composition of tar from NMH coal pyrolysis at different feed time

    图  11  不同进料时间下NMH煤热解焦油中含氧化合物的相对含量

    Figure  11  Relative content of oxygen-containing compounds in tar from NMH coal pyrolysis at different feed time

    图  12  不同进料时间下NMH煤热解焦油中芳香化合物的相对含量

    Figure  12  Relative content of aromatics in tar from NMH coal pyrolysis at different feed time

    图  13  不同进料时间下NMH煤热解气的产率

    Figure  13  Yield of pyrolysis gas at different feed time

    表  1  NMH煤的工业分析、元素分析和格金干馏焦油产率

    Table  1  Proximate analysis, ultimate analysis and tar yield by Gray-King assay of NMH coal

    Proximate analysis w/%Ultimate analysis wdaf/%Gray-King assay
    MadAdVdaf CHNStO* tar yield wd/%
    19.505.8050.1274.355.130.720.3119.4915.4
    note: ad: air dried basis; d: dried basis; daf: dried and ash-free basis; St: total sulfur; *: by difference
    下载: 导出CSV

    表  2  反应前后活性炭的氮气吸附孔结构特征参数

    Table  2  Characteristic parameters of pore structure for fresh and used activated carbon by nitrogen adsorption characterization

    SampleSBET/(m2·g−1)Smic/(m2·g−1)Sext/(m2·g−1)vtot/(cm3·g−1)vmic/(cm3·g−1)vmes/(cm3·g−1)dave/nm
    AC-1-Fresh1221.24469.38751.860.580.190.382.13
    AC-1-Spent699.05367.46331.590.340.150.182.32
    AC-2-Fresh953.34836.00117.350.390.330.071.99
    AC-2-Spent725.42639.6285.810.300.250.051.88
    note: SBET: BET surface area, Smic: micropore area, Sext: external surface, vtot: total pore volume, vmic: micropore volume, vmes: mesopore volume, dave: average pore diameter
    下载: 导出CSV

    表  3  不同进料时间反应后活性炭的氮气吸附孔结构特征参数

    Table  3  Characteristic parameters of pore structure for spent activated carbons at different times by nitrogen adsorption characterization

    SampleSBET/(m2·g−1)Smic/(m2·g−1)Sext/(m2·g−1)vtot/(cm3·g−1)vmic/(cm3·g−1)vmes/(cm3·g−1)dave/nm
    AC-1-30 min1125.44368.80756.640.470.150.321.93
    AC-1-60 min777.51315.57461.940.330.130.201.97
    AC-1-100 min699.05367.46331.590.340.150.182.32
    下载: 导出CSV
  • [1] 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊,2012,27(3):382−388. doi: 10.3969/j.issn.1000-3045.2012.03.018

    WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci,2012,27(3):382−388. doi: 10.3969/j.issn.1000-3045.2012.03.018
    [2] 韩永滨, 刘桂菊, 赵慧斌. 低阶煤的结构特点与热解技术发展概述[J]. 中国科学院院刊,2013,28(6):772−780.

    HAN Yong-bin, LIU Gui-ju, ZHAO Hui-bin. Structural characteristics of low-rank coal and its pyrolysis technology development[J]. Bull Chin Acad Sci,2013,28(6):772−780.
    [3] LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles-A crucial step in pyrolysis of coals[J]. Fuel, 2015, 154: 361−369.
    [4] 刘振宇. 煤快速热解制油技术问题的化学反应工程根源: 逆向传热与传质[J]. 化工学报,2016,67(1):1−5.

    LIU Zhen-yu. Origin of common problems in fast coal pyrolysis technologies for tar: the countercurrent flow of heat and volatiles[J]. J Chem Ind Eng (China),2016,67(1):1−5.
    [5] WEI B Y, JIN L J, WANG D C, SHI H, HU H Q. Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites[J]. Fuel, 2020, 259: 116234.
    [6] FU D Q, LI X H, LI W Y, FEN J. Catalytic upgrading of coal pyrolysis products over bio-char[J]. Fuel Process Technol,2018,176:240−248. doi: 10.1016/j.fuproc.2018.04.001
    [7] HAN J Z, WANG X D, YUE J R, GAO S Q, XU G W. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Process Technol,2014,122:98−106. doi: 10.1016/j.fuproc.2014.01.033
    [8] JIN L J, BAI X Y, LI Y, DONG C, HU H Q, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46. doi: 10.1016/j.fuproc.2015.12.028
    [9] WANG D L, CHEN Z H, ZHOU Z M, WANG D M, YU J, GAO S Q. Catalytic upgrading of volatiles from coal pyrolysis over sulfated carbon-based catalysts derived from waste red oil[J]. Fuel Process Technol,2019,189:98−109. doi: 10.1016/j.fuproc.2019.03.003
    [10] ZHAO Q X, MAO Q M, ZHOU Y Y, WEI J H, LIU X C, YANG J Y, LUO L, ZHANG J C, CHEN H, CHEN H B, TANG L. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications[J]. Chemosphere,2017,189:224−238. doi: 10.1016/j.chemosphere.2017.09.042
    [11] DUAN X G, SU C, ZHOU L, SUN H Q, SUVOROVA A, ODEDAIRO T, ZHU Z H, SHAO Z P, WANG S B. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Appl Catal B: Environ,2016,194:7−15. doi: 10.1016/j.apcatb.2016.04.043
    [12] LIU Y J, YAN L J, BAI Y H, LI F. Catalytic upgrading of volatile from coal pyrolysis over faujasite zeolites[J]. J Anal Appl Pyrolysis,2018,132:184−189. doi: 10.1016/j.jaap.2018.03.001
    [13] WANG Y J, CAO J P, REN X Y, FENG X B, ZHAO X Y, HUANG Y, WEI X Y. Synthesis of ZSM-5 using different silicon and aluminum sources nature for catalytic conversion of lignite pyrolysis volatiles to light aromatics[J]. Fuel,2020,268:117286. doi: 10.1016/j.fuel.2020.117286
    [14] WANG Q, WANG M J, WANG H, KONG J, XIE W, WANG J C, CHANG L P, BAO W R. Effect of temperature and gasification gas from char on the reactions of volatiles generated from rapid pyrolysis of a low rank coal[J]. Fuel Process Technol,2021,212:106601. doi: 10.1016/j.fuproc.2020.106601
    [15] LI X R, JIN X, WANG M J, YU Y X, KONG J, XIE W, WANG J C, CHANG L P, BAO W R. Effect of volatiles' reaction on coking of tar during pyrolysis of Naomaohu coal in a downer-bed reactor[J]. Fuel Process Technol,2021,212:106623. doi: 10.1016/j.fuproc.2020.106623
    [16] WU J F, LIU Q Y, WANG R X, HE W J, SHI L, GUO X J, CHEN Z Z, JI L M, LIU Z Y. Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal[J]. Fuel Process Technol,2017,155:68−73. doi: 10.1016/j.fuproc.2016.03.022
    [17] YU W H, HAN S, LEI Z P, ZHANG K, YAN J C, LI Z K, SHUI H F, KANG S G, WANG Z C, REN S B, PAN C X. The reaction behavior of volatiles generated from lignite pyrolysis[J]. Fuel,2019,244:22−30. doi: 10.1016/j.fuel.2019.01.185
    [18] 王兴栋, 韩江则, 陆江银, 高士秋, 许光文. 半焦基催化剂裂解煤热解产物提高油气品质[J]. 化工学报,2012,63(12):3897−3905. doi: 10.3969/j.issn.0438-1157.2012.12.023

    WANG Xing-dong, HAN Jiang-ze, LU Jian-yin, GAO Shi-qiu, XU Guang-wen. Catalytic cracking of coal pyrolysis product for oil and gas upgrading over char-based catalyst[J]. J Chem Ind Eng (China),2012,63(12):3897−3905. doi: 10.3969/j.issn.0438-1157.2012.12.023
    [19] 杨晓霞, 汪自典, 付峰, 郭延红. 炭基催化剂对煤热解油气品质的影响及机理[J]. 煤炭转化,2019,42(3):10−17.

    YANG Xiao-xia, WANG Zi-dian, FU Feng, GUO Yan-hong. Effects of carbon-based catalysts on quality of coal tar and gas and its mechanism[J]. Coal Conv,2019,42(3):10−17.
    [20] ZHOU B, LIU Q Y, SHI L, LIU Z Y. Electron spin resonance studies of coals and coal conversion processes: A review[J]. Fuel Process Technol,2019,188:212−227. doi: 10.1016/j.fuproc.2019.01.011
    [21] JIN X, LI X R, KONG J, XIE W, WANG M J, WANG J C, BAO W R, CHANG L P. Insights into coke formation during thermal reaction of six different distillates from the same coal tar[J]. Fuel Process Technol,2021,211:106592. doi: 10.1016/j.fuproc.2020.106592
    [22] HE W J, LIU Z Y, LIU Q Y, CI D H, LIEVENS C, GUO X F. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel,2014,134:375−380. doi: 10.1016/j.fuel.2014.05.064
    [23] ZHOU Q Q, LIU Q Y, SHI L, YAN Y X, LIU Z Y. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal[J]. Fuel Process Technol,2017,161:304−310. doi: 10.1016/j.fuproc.2017.01.040
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  69
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-01-29
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回