留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydroliquefaction kinetics of coal-derived preasphaltenes catalyzed by FeS and S

KANG Shi-gang GAO Bin SHUI Heng-fu WANG Zhi-cai LEI Zhi-ping REN Shi-biao YAN Jing-chong LI Zhan-ku PAN Chun-xiu YAN Hong-lei WANG Xiao-ling

康士刚, 高彬, 水恒福, 王知彩, 雷智平, 任世彪, 颜井冲, 李占库, 潘春秀, 闫洪雷, 王晓玲. 煤基前沥青烯的FeS + S催化加氢动力学研究[J]. 燃料化学学报, 2021, 49(4): 431-435. doi: 10.1016/S1872-5813(21)60049-X
引用本文: 康士刚, 高彬, 水恒福, 王知彩, 雷智平, 任世彪, 颜井冲, 李占库, 潘春秀, 闫洪雷, 王晓玲. 煤基前沥青烯的FeS + S催化加氢动力学研究[J]. 燃料化学学报, 2021, 49(4): 431-435. doi: 10.1016/S1872-5813(21)60049-X
KANG Shi-gang, GAO Bin, SHUI Heng-fu, WANG Zhi-cai, LEI Zhi-ping, REN Shi-biao, YAN Jing-chong, LI Zhan-ku, PAN Chun-xiu, YAN Hong-lei, WANG Xiao-ling. Hydroliquefaction kinetics of coal-derived preasphaltenes catalyzed by FeS and S[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 431-435. doi: 10.1016/S1872-5813(21)60049-X
Citation: KANG Shi-gang, GAO Bin, SHUI Heng-fu, WANG Zhi-cai, LEI Zhi-ping, REN Shi-biao, YAN Jing-chong, LI Zhan-ku, PAN Chun-xiu, YAN Hong-lei, WANG Xiao-ling. Hydroliquefaction kinetics of coal-derived preasphaltenes catalyzed by FeS and S[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 431-435. doi: 10.1016/S1872-5813(21)60049-X

煤基前沥青烯的FeS + S催化加氢动力学研究

doi: 10.1016/S1872-5813(21)60049-X
详细信息
  • 中图分类号: TQ529

Hydroliquefaction kinetics of coal-derived preasphaltenes catalyzed by FeS and S

Funds: The project was supported by the National Natural Science Foundation of China (Grants 21776001, U1710114, 21808002, 21878001, 21978002, 21978003, 22008001, 22078002)
More Information
    Corresponding author: Tel: +86 13855531730, +86 555 2311551. E-mail address: ksg825@163.com (S G Kang)
  • 摘要: 为了优化煤直接液化工艺条件和提高油收率,本研究利用30 mL高压管式反应釜研究了煤直接液化重质产物前沥青烯加氢液化行为,考察了FeS + S催化剂下反应温度(380、400、420和440 ℃)、液化时间(0、5、10、20、30和60 min)、5.0 MPa氢初压和四氢萘溶剂条件下前沥青烯液化转化行为,同时考察了前沥青烯的催化加氢液化反应动力学。利用集总动力学法建立了FeS + S催化前沥青烯加氢的动力学模型。研究表明,前沥青烯加氢直接生成沥青烯和焦渣,而沥青烯进一步加氢裂解生成油和气,高温下发生明显的逆向缩合反应,即前沥青烯生成焦渣和沥青烯生成前沥青烯。温度和反应时间的增加有利于提高前沥青烯的转化率和油气收率,440 °C下反应60 min时,前沥青烯的转化率为79.45%,油气收率为34.7%。380−440 ℃温度下,动力学模型能够较好地描述小龙潭液化产物前沥青烯的加氢转化行为,各步转化均符合Arrhenius表观活化能公式,并且活化能变化为50−245 kJ/mol。
  • FIG. 606.  FIG. 606.

    FIG. 606.. 

    Figure  1.  Hydroliquefaction model of preasphaltenes

    Figure  2.  Comparison of model-fited curves with experimental data of PA hydroliquefaction at 380 °C

    Figure  3.  Comparison of model-fited curves with experimental data of PA hydroliquefaction at 400 °C

    Figure  4.  Comparison of model-fited curves with experimental data of PA hydroliquefaction at 420 °C

    Figure  5.  Comparison of model-fited curves with experimental data of PA hydroliquefaction at 440 °C

    Table  1.   Proximate and ultimate analyses of samples

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNS${\rm{O} }_{ {\rm{} } }^*$
    XLT14.6010.8362.7662.915.012.113.6326.34
    PA80.425.033.061.3610.13
    M: moisture; A: ash; V: volatile matter; *: by difference
    下载: 导出CSV

    Table  2.   Conversions (%) and liquefaction product distributions (%) of PA liquefaction catalyzed by FeS + S at 380, 400, 420 and 440 °C

    Reaction
    time/min
    380 °C400 °C
    PAASOcharPAASOchar
    081.6810.113.384.8379.0112.256.332.41
    571.0614.447.696.8174.1710.7510.194.89
    1066.3117.89.776.1264.4614.3615.715.47
    2062.3317.6512.257.7757.320.6617.644.4
    3050.9422.7216.3110.0346.0823.3323.636.96
    6040.5428.1322.558.7828.5529.8831.4210.15
    Reaction
    time/min
    420 °C440 °C
    PAASOcharPAASOchar
    076.9612.548.022.4872.4314.610.962.01
    569.0314.8612.753.3666.5119.2612.122.11
    1063.6520.5410.015.855.9921.2217.365.43
    2049.9723.2116.810.046.7726.4718.378.39
    3039.6825.8426.258.2333.4732.2625.368.91
    6025.3432.4831.7210.421.5529.0834.714.67
    下载: 导出CSV

    Table  3.   Kinetic parameters of PA hydroliquefaction calculated by the model

    Rate
    constant/min−1
    380 ℃400 ℃420 ℃440 ℃Ea/(kJ·mol−1)
    kpa0.37800.37970.47780.5616108.28
    kao0.02030.02260.02840.0289100.12
    kap1.07751.10321.13881.33251.12
    kpc0.00210.00330.00410.0055241.16
    下载: 导出CSV
  • [1] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel,1978,57(11):676−680. doi: 10.1016/0016-2361(78)90020-0
    [2] MARTINEZ M T, BENITO A M, CALLEJAS M A. Kinetics of asphaltene hydroconversion:1. Thermal hydrocracking of a coal residue[J]. Fuel,1997,76(10):899−905. doi: 10.1016/S0016-2361(97)00107-5
    [3] BENITO A M, CALLEJAS M, MARTINEZ M T. Kinetics of asphaltene hydroconversion: 2.Catalytic hydrocracking of a coal residue[J]. Fuel,1997,76(10):907−911. doi: 10.1016/S0016-2361(97)00108-7
    [4] BENITO A M, MARTINEZ M T, FERNANDEZ I, MIRANDA J L. Upgrading of an asphaltenic coal residue: thermal hydroprocessing[J]. Energy Fuels,1996,10(2):401−408. doi: 10.1021/ef9501556
    [5] OUCHI K, KATOH T, ITOH H. Reaction mechanism for the hydrogenolysis of coal-derived preasphaltene[J]. Fuel,1981,60(8):689−693. doi: 10.1016/0016-2361(81)90220-9
    [6] KEMP W, STEEDMAN W, THOMSON M A, SCOTT D A. Comparative reactivities of coal asphaltenes during hydropyrolysis[J]. Fuel,1985,64(10):1379−1382. doi: 10.1016/0016-2361(85)90338-2
    [7] STEEDMAN W, KEMP W, JOHNSON P, SCOTT D A. Pyrolysis and hydropyrolysis of coal asphaltenes and preasphaltenes-relationships between reactivity and structural parameters derived from chemical and spectroscopic analyses[J]. Fuel,1989,68(8):1017−1022. doi: 10.1016/0016-2361(89)90068-9
    [8] ZHANG C, LEE C W, KEOGH R A, DEMIREL B, DAVIS B H. Thermal and catalytic conversion of asphaltenes[J]. Fuel,2001,80(8):1131−1146. doi: 10.1016/S0016-2361(00)00178-2
    [9] WANG Z C, SHUI H F, LEI Z P, REN S B, KANG S G, ZHOU H, GU X P, GAO J S. Study of the preasphaltenes of coal liquefaction and its hydro-conversion kinetics catalyzed by SO42-/ZrO2[J]. Fuel Process Technol,2011,92(10):1830−1835. doi: 10.1016/j.fuproc.2011.04.039
    [10] KANG S G, ZONG Z M, SHUI H F, WANG Z C, WEI X Y. Comparison of catalytic hydroliquefaction of Xiaolongtan lignite over FeS, FeS + S and $ {\rm{SO}}_4^{2 - }/{\rm{Zr}}{{\rm{O}}_2} $[J]. Energy,2011,36(1):41−45. doi: 10.1016/j.energy.2010.10.025
    [11] WANG Z C, SHUI H F, ZHANG D X, GAO J S. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction[J]. Fuel,2007,86(5-6):835−842. doi: 10.1016/j.fuel.2006.09.018
    [12] DING W B, LIANG J, ANDERSON L L. Kinetics of thermal and catalytic coal liquefaction with plastic-derived liquids as solvent[J]. Ind Eng Chem Res,1997,36(5):1444−1452. doi: 10.1021/ie960568+
    [13] RAMDOSS P K, TARRER A R. Modeling of two-stage coal coprocessing process[J]. Energy Fuels,1997,11(1):194−201. doi: 10.1021/ef960068t
    [14] WELLER S, CLARK E L, PELIPETZ M G. Mechanism of coal hydrogenation[J]. Ind Eng Chem,1950,42(2):334−336. doi: 10.1021/ie50482a033
    [15] WELLER S, PELIPETZ M G, FRIEDMAN S. Kinetics of coal hydrogenation conversion of asphalt[J]. Ind Eng Chem,1951,43(7):1572−1575. doi: 10.1021/ie50499a030
    [16] CRONAUER D C, SHAH Y T, RUBERTO R G. Kinetics of thermal liquefaction of Belle Ayr subbituminous coal[J]. Ind Eng Chem Process Des Dev,1978,17(3):281−288. doi: 10.1021/i260067a013
    [17] MOHAN G, SILLA H. Kinetics of donor-solvent liquefaction of bituminous coals in nonisothermal experiments[J]. Ind Eng Chem Process Des Dev,1981,20(2):349−358. doi: 10.1021/i200013a026
    [18] GERTENBACH D D, BALDWIN R M, BAIN R L. Modeling of bench-scale coal liquefaction systems[J]. Ind Eng Chem Process Des Dev,1982,21(3):490−500. doi: 10.1021/i200018a024
    [19] ABICHANDANI J S, SHAH Y T, CRONAUER D C, RUBERTO R G. Kinetics of thermal liquefaction of coal[J]. Fuel,1982,61(3):276−282. doi: 10.1016/0016-2361(82)90125-9
    [20] SUZUKI T, ANDO T, WATANABE Y. Kinetic studies on the hydroliquefaction of coals using organometallic complexes[J]. Energy Fuels,1987,1(3):294−300. doi: 10.1021/ef00003a013
    [21] SIMSEK E H, KARADUMAN A, OLCAY A. Investigation of dissolution mechanism of six Turkish coals in tetralin with microwave energy[J]. Fuel,2001,80(15):2181−2187. doi: 10.1016/S0016-2361(01)00102-8
    [22] SHUI H F, CHEN Z X, WANG Z C, ZHANG D X. Kinetics of Shenhua coal liquefaction catalyzed by $ {\rm{SO}}_4^{2 - }/{\rm{Zr}}{{\rm{O}}_2} $ solid acid[J]. Fuel,2010,89(1):67−72. doi: 10.1016/j.fuel.2009.02.019
    [23] WANG Z C, SHUI H F, ZHANG D X, GAO J S. Catalysis of $ {{\rm{SO}}_{4}^{2-}}/{\rm{ZrO}}_{2} $ solid acid for the liquefaction of coal[J]. Fuel,2009,88(5):885−889. doi: 10.1016/j.fuel.2008.10.040
    [24] YADAY G D, NAIR J J. Sulfated zirconia and its modified versions as promising catalysts for industrial processes[J]. Microporous Mesoporous Mater,1999,33(1/3):1−48. doi: 10.1016/S1387-1811(99)00147-X
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  24
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-12-08
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回