留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四氢萘对淖毛湖煤热解挥发物反应行为的影响

李晓荣 靳鑫 王美君 闫伦靖 申岩峰 孔娇 王建成 常丽萍 鲍卫仁

李晓荣, 靳鑫, 王美君, 闫伦靖, 申岩峰, 孔娇, 王建成, 常丽萍, 鲍卫仁. 四氢萘对淖毛湖煤热解挥发物反应行为的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60052-X
引用本文: 李晓荣, 靳鑫, 王美君, 闫伦靖, 申岩峰, 孔娇, 王建成, 常丽萍, 鲍卫仁. 四氢萘对淖毛湖煤热解挥发物反应行为的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60052-X
LI Xiao-rong, JIN Xin, WANG Mei-jun, YAN Lun-jing, SHEN Yan-feng, KONG Jiao, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Effect of tetralin on the reaction behavior of volatiles from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60052-X
Citation: LI Xiao-rong, JIN Xin, WANG Mei-jun, YAN Lun-jing, SHEN Yan-feng, KONG Jiao, WANG Jian-cheng, CHANG Li-ping, BAO Wei-ren. Effect of tetralin on the reaction behavior of volatiles from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60052-X

四氢萘对淖毛湖煤热解挥发物反应行为的影响

doi: 10.1016/S1872-5813(21)60052-X
基金项目: 国家重点研发计划项目(2016YFB0600302)和国家自然科学基金(22078224)资助
详细信息
    作者简介:

    李晓荣:lixiaorong4024@163.com

    通讯作者:

    Tel: 0351-6010482, E-mail: wangmeijun@tyut.edu.cn

    lpchang@tyut.edu.cn

  • 中图分类号: TQ530.2

Effect of tetralin on the reaction behavior of volatiles from pyrolysis of Naomaohu coal

Funds: The project was supported by National Key Research and Development Program of China (2016YFB0600302) and National Natural Science Foundation of China (22078224)
  • 摘要: 煤在中低温热解过程中挥发物反应会显著影响焦油组成和析炭行为,这与挥发物反应活性及体系富氢组分含量有关。本文采用两段式固定床反应器,通过引入四氢萘(THN),进行淖毛湖煤热解挥发物在不同温度下的反应行为,及其对产物分布和析炭产率影响的对比研究,借助全二维气质联用仪对焦油组成进行分析。结果表明,400 °C时因挥发物与THN间的反应较弱且焦油冷凝导致析炭量较高;随着温度升高,挥发物和THN间的反应加剧,导致液体产物产量下降、气体产量增大。根据挥发物和THN反应产物分布的计算值和实验值发现,引入THN后液体产物产量增大,且2−5环芳烃和析炭量减少。表明挥发物与THN之间存在相互作用,促进了THN的α−H转移,为反应体系提供了更多H·。同时,有助于酚类化合物和其他含氧类物的形成,特别是多元酚。煤热解挥发物的反应活性与含氧类自由基有关,此类自由基对H·的键合力较强。
  • 图  1  两段式固定床-质谱联用装置示意图

    Figure  1.  Schematic diagram of two-stage fixed bed reactor and mass spectrometry

    图  2  不同反应温度下THN对NMH煤热解产物产量的影响

    Figure  2.  Effect of tetralin on the product yields during pyrolysis of NMH coal at different reaction temperatures

    (a): Liquid product; (b): Gas product; (c): Coke; (d): Water

    图  3  不同反应温度下THN对NMH煤热解液体产物组成的影响

    Figure  3.  Effect of tetralin on the liquid compositions during pyrolysis of NMH coal at different reaction temperatures

    (a): Phenols; (b): PAHs; (c): Aliphatics; (d): Benzenes; (e): Oxygenated compounds; (f): Heteroatomic compounds

    图  4  不同反应温度下THN对NMH煤热解液体产物中多环芳烃组成的影响

    Figure  4.  Effect of tetralin on the PAHs compositions of liquid during pyrolysis of NMH coal at different reaction temperatures

    (a): 2-rings aromatics; (b): 3-rings aromatics; (c): 4-rings aromatics; (d): 5-rings aromatics

    图  5  不同反应温度下THN对NMH煤热解液体产物中脂肪族化合物组成的影响

    Figure  5.  Effect of tetralin on the aliphatics compositions of liquid during pyrolysis of NMH coal at different reaction temperatures

    图  6  不同反应温度下THN对NMH煤热解液体产物中酚类化合物组成的影响

    Figure  6.  Effect of tetralin on the phenols compositions of liquid during pyrolysis of NMH coal at different reaction temperatures

    图  7  不同反应温度下THN对NMH煤热解气体组成的影响

    (a): H2; (b): CH4; (c): CO2; (d): CO

    Figure  7.  Effect of tetralin on the gas compositions during pyrolysis of NMH coal at different reaction temperatures

    表  1  淖毛湖煤的基本性质

    Table  1.   Basic properties of NMH coal

    Proximate analysis w/%Ultimate analysis wdaf/%Gray-King wdaf/%
    MadAdVdafCHNSOatar yieldwater yield
    19.505.8050.1274.355.130.720.3119.4915.411.7
    note: ad: air-dry basis; daf: dry-and-ash-free basis; a: by difference
    下载: 导出CSV
  • [1] 周琦. 低阶煤提质技术现状及完善途径[J]. 洁净煤技术,2016,22(2):23−30.

    ZHOU Qi. Status and improvement approach of low rank coal upgrading technologies[J]. Clean Coal Technol,2016,22(2):23−30.
    [2] 郭树才, 罗长齐, 张代佳, 韩壮, 刘恒韫, 康锡志, 于兴国, 胡贵河. 褐煤固体热载体干馏新技术工业性试验[J]. 大连理工大学学报,1995,35(1):46−50.

    GUO Shu-cai, LUO Chang-qi, ZHANG Dai-jia, HAN Zhuang, LIU Heng-yun, KANG Xi-zhi, YU Xing-guo, HU Gui-he. Experiment in pilot plant of new technology for lignite retorting using solid heat carrier[J]. J Dalian Univ Technol,1995,35(1):46−50.
    [3] 王勤辉, 骆仲泱, 方梦祥, 倪明江, 岑可法. 12兆瓦热电气多联产装置的开发[J]. 燃料化学学报,2002,30(2):141−146. doi: 10.3969/j.issn.0253-2409.2002.02.009

    WANG Qin-hui, LUO Zhonng-yang, FANG Meng-xiang, NI Hong-jiang, CEN Ke-fa. Development of a 12 MW multi-generation of gas, steam and power[J]. J Fuel Chem Technol,2002,30(2):141−146. doi: 10.3969/j.issn.0253-2409.2002.02.009
    [4] 戴秋菊, 唐道武, 常万林. 采用多段回转炉热解工艺综合利用年青煤[J]. 煤炭加工与综合利用,1999,(3):22−23. doi: 10.3969/j.issn.1005-8397.1999.03.008

    DAI Qiu-ju, TANG Dao-wu, CHANG Wan-lin. Comprehensive utilization of low rank coal in multistage rotary furnace pyrolysis technology[J]. Coal Process Compr Util,1999,(3):22−23. doi: 10.3969/j.issn.1005-8397.1999.03.008
    [5] ZHANG C, WU R C, HU E F, LIU S Y, XU G W. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J], Energy Fuel, 2014, 28: 7294–7302.
    [6] EDWARDS J H, SCHLUTER K, TYLER R J. Upgrading of flash pyrolysis tars to synthetic crude oil: 1. First stage hydrotreatment using a disposable catalyst[J], Fuel, 1985, 64: 594–599.
    [7] 曲洋, 初茉, 郝成亮, 张超, 白书霞. 固定床提质过程褐煤的热碎裂/粉化特性及其负效应分析[J]. 煤炭学报,2018,43(7):2036−2043.

    QU Yang, CHU Mo, HAO Cheng-liang, ZHANG Chao, BAI Shu-xia. Characteristics of lignite fragmentation/pulverization and its negative effects during upgrading in fixed-bed[J]. J China Coal Soc,2018,43(7):2036−2043.
    [8] PUSAT S, AKKOYUNLU M-T. A new empirical correlation to model drying characteristics of low rank coals[J]. Int J Oil Gas Coal Technol. 2017, 1: 1.
    [9] PATTANOTAI T, WATANABE H, OKAZAKI K. Experimental investigation of intraparticle secondary reactions of tar during wood pyrolysis[J]. Fuel,2013,104:468−475. doi: 10.1016/j.fuel.2012.08.047
    [10] JIE Y Y, QIAO P J, ZONG S, QIN C B, WANG Y Y. Fast pyrolysis characteristics of two typical coastal zone biomass fuels by thermal gravimetric analyzer and down tube reactor[J]. Bioresour Technol,2019,283:96−105.
    [11] LIU Z Y. Advancement in coal chemistry: Structure and reactivity[J]. Sci Sin Chim,2014,44:1431−1435. doi: 10.1360/N032014-00159
    [12] LIU Z Y. Origin of common problems in fast coal pyrolysis technologies for tar: The countercurrent flow of heat and volatiles[J]. CIESC J,2016,67:1−5.
    [13] DONG L, HAN S, YU W H, LEI Z P, KANG S G, SHUI H F. Effect of volatile reactions on the yield and quality of tar from pyrolysis of Shenhua bituminous coal[J]. J Anal Appl Pyrolysis,2019,140:321−330. doi: 10.1016/j.jaap.2019.04.009
    [14] XIONG Z, WANG Y, SYED H, HU X, HAN H D, SU S, HU S, XIANG J. Effects of heating rate on the evolution of bio-oil during its pyrolysis[J]. Energy Convers Manag,2018,163:420−427. doi: 10.1016/j.enconman.2018.02.078
    [15] XIONG Z, SYED H, HU X, GUO J H, CHEN Y J, LIU Q, WANG Y, SU S, XIANG J. Effects of the component interaction on the formation of aromatic structures during the pyrolysis of bio-oil at various temperatures and heating rates[J]. Fuel,2018,233:461−468. doi: 10.1016/j.fuel.2018.06.064
    [16] XU K, HU S, WANG Y, ZHANG L P, SU S, JIANG L, XU J, XIANG J. Relation between char structures and formation of volatiles during the pyrolysis of Shenfu coal: further understanding on the effects of mobile phase and fixed phase[J]. Fuel Process Technol,2018,178:379−385. doi: 10.1016/j.fuproc.2018.07.022
    [17] LI X R, JIN X, WANG M J, YU Y X, KONG J, XIE W, WANG J C, CHANG L P, BAO W R. Effect of volatiles' reaction on coking of tar during pyrolysis of Naomaohu coal in a downer-bed reactor[J]. Fuel Process Technol,2021,212:106623. doi: 10.1016/j.fuproc.2020.106623
    [18] JIN X, LI X R, KONG J, XIE W, WANG M J, WANG J C, BAO W R, CHANG L P. Insights into coke formation during thermal reaction of six different distillates from the same coal tar[J]. Fuel Process Technol,2021,211:106592. doi: 10.1016/j.fuproc.2020.106592
    [19] WANG Q, WANG M J, WANG H, KONG J, XIE W, WANG J C, CHANG L P, BAO W R. Effect of temperature and gasification gas from char on the reactions of volatiles generated from rapid pyrolysis of a low rank coal[J]. Fuel Process Technol,2021,212:106601. doi: 10.1016/j.fuproc.2020.106601
    [20] JIN L J, ZHOU X, HE X F, HU H Q. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel,2013,114:l87−190.
    [21] DONG C, JIN L J, LI Y, ZHOU Y. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28:7377−7384. doi: 10.1021/ef501796a
    [22] 陆强, 郭浩强, 叶小宁, 王昕, 周民星. 供氢剂作用下生物质快速热解的研究进展[J]. 林产化学与工业,2017,37(6):1−9. doi: 10.3969/j.issn.0253-2417.2017.06.001

    LU Qiang, GUO Hao-qiang, YE Xiao-ning, WANG Xin, ZHOU Ming-xing. Research Progress of Hydrogen Donor Assisted Fast Pyrolysis of Biomass[J]. Chem Ind For Prod,2017,37(6):1−9. doi: 10.3969/j.issn.0253-2417.2017.06.001
    [23] XUE Y, ZHOU S, BAI X L. Role of hydrogen transfer during catalytic co-pyrolysis of lignin and tetralin over HZSM-5 and HY zeolite catalysts[J]. ACS Sustainable Chem Eng,2016,4:4237−4250.
    [24] 申俊, 熊奇, 武瑞涛, 刘刚, 牛艳霞. 甲烷气氛下模型化合物热解的初步研究[J]. 燃烧科学与技术,2015,21(1):47−53.

    SHEN Jun, XIONG Qi, WU Rui-tao, LIU Gang, NIU Yan-xia. Preliminary Research on the thermal cracking of model compounds under methane atmosphere[J]. J Combust Sci Technol,2015,21(1):47−53.
    [25] CONNORS W, JOHANSON L, SARKANEN K, WINSLOW P. Thermal degradation of kraft lignin in tetralin. Holzforschung. 1980, 34 (1): 29−37.
    [26] WU J F, LIU Q Y, WANG R X, HE W J, SHI L, GUO X J, CHEN Z Z, JI L M, LIU Z Y. Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal[J], Fuel Process Technol. 2017, 155: 68–73.
    [27] 杨晓林, 应立明, 覃志伟. 四氢萘热解反应机理研究[J]. 化学学报,1990,48:441−446.

    YANG Xiao-lin, YING Li-ming, QIN Zhi-wei. The study of mechanism for the thermolysis of tetralin[J]. Acta Chim Sin,1990,48:441−446.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-01-28
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回