留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite

HOU Meng-ying LI Gang JIN Li-jun HU Hao-quan

侯梦颖, 李钢, 靳立军, 胡浩权. Ni改性HZSM-5催化类煤模型化合物热解研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60054-3
引用本文: 侯梦颖, 李钢, 靳立军, 胡浩权. Ni改性HZSM-5催化类煤模型化合物热解研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60054-3
HOU Meng-ying, LI Gang, JIN Li-jun, HU Hao-quan. Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60054-3
Citation: HOU Meng-ying, LI Gang, JIN Li-jun, HU Hao-quan. Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60054-3

Ni改性HZSM-5催化类煤模型化合物热解研究

doi: 10.1016/S1872-5813(21)60054-3

Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600301)
More Information
  • 摘要: 以苯乙醚(PEE)和苯基苄基醚(BOB)为类煤模型化合物,在固定床反应器上研究了它们在镍改性HZSM-5催化剂存在下的催化热解行为。采用浸渍法将镍负载于HZSM-5沸石,对所得催化剂采用XRD、FT-IR、H2-TPR、NH3-TPD进行表征,还研究了还原预处理对催化剂性能的影响。研究表明,NiO/HZSM-5能显著提高两种模型化合物热解液相产物中酚类化合物的收率。与Ni/HZSM-5相比,NiO/HZSM-5对苯乙醚热解催化效果更好。
  • Figure  1.  Flow sheet of experimental apparatus

    Figure  2.  XRD patterns of different catalysts

    Figure  3.  FT-IR spectra for catalysts

    Figure  4.  H2-TPR profiles for catalysts

    Figure  5.  NH3-TPD profiles for catalysts

    Figure  6.  Conversion, yield of gas, liquid and char from PEE pyrolysis

    Figure  7.  Distribution of liquid products from PEE pyrolysis

    Figure  8.  Distribution of gas products from PEE pyrolysis

    Figure  9.  Pathway for the pyrolysis of PEE[7, 24]

    Figure  10.  Pathway for the pyrolysis of PEE on NiO catalyst

    Figure  11.  Conversion, yield of gas, liquid and char from PEE pyrolysis under the catalytic action of Ni/HZSM-5

    Figure  12.  Distribution of gas products from PEE pyrolysis under the catalytic action of Ni/HZSM-5

    Figure  13.  Conversion, yield of gas, liquid and char from BOB pyrolysis

    Figure  14.  Pathway for the pyrolysis of BOB on NiO catalyst

    Figure  15.  Distribution of liquid products from BOB pyrolysis

    Figure  16.  Pathway for the pyrolysis of BOB on NiO/HZSM-5 catalyst

  • [1] MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62(2):119−135.
    [2] SCHOBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel,2002,81(1):15−32. doi: 10.1016/S0016-2361(00)00203-9
    [3] GRANDA M, BLANCO C, ALVAREZ P, PATRICK J W, MENÉNDEZ R. Chemicals from coal coking[J]. Chem Rev,2014,114(3):1608−1636. doi: 10.1021/cr400256y
    [4] POUTSMA M L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J]. Energy Fuels,1990,4(2):113−131. doi: 10.1021/ef00020a001
    [5] BENJAMIN B M, RAAEN V F, MAUPIN P H, BROWN L L, COLLINS C J. Thermal cleavage of chemical bonds in selected coal-related structures[J]. Fuel,1978,57(5):269−272. doi: 10.1016/0016-2361(78)90003-0
    [6] WANG S, FAN X, ZHENG A, WANG Y, DOU Y, WEI X, ZHAO Y, WANG R, ZONG Z, ZHAO W. Evaluation of atmospheric solids analysis probe mass spectrometry for the analysis of coal-related model compounds[J]. Fuel,2014,117:556−563. doi: 10.1016/j.fuel.2013.09.010
    [7] LI G, LI L, SHI L, JIN L, TANG Z, FAN H, HU H. Experimental and theoretical study on the pyrolysis mechanism of three coal-based model compounds[J]. Energy Fuels,2014,28(2):980−986. doi: 10.1021/ef402273t
    [8] LI J, LU W, KONG B, CAO Y, QI G, QIN C. Mechanism of gas generation during low-temperature oxidation of coal and model compounds[J]. Energy Fuels,2019,33(2):1527−1539. doi: 10.1021/acs.energyfuels.8b03571
    [9] YAN L, BAI Y, ZHAO R, LI F, XIE K. Correlation between coal structure and release of the two organic compounds during pyrolysis[J]. Fuel,2015,145:12−17. doi: 10.1016/j.fuel.2014.12.056
    [10] KONG L, LI G, JIN L, HU H. Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor[J]. Fuel Process Technol,2015,129:113−119. doi: 10.1016/j.fuproc.2014.09.009
    [11] JARVIS M W, DAILY J W, CARSTENSEN H, DEAN A M, SHARMA S, DAYTON D C, ROBICHAUD D J, NIMLOS M R. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. J Phys Chem A,2011,115(4):428−438. doi: 10.1021/jp1076356
    [12] FU Y, GUO Y, ZHANG K. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels,2016,30(3):2428−2433. doi: 10.1021/acs.energyfuels.5b02720
    [13] KONG X, BAI Y, YAN L, LI F. Catalytic upgrading of coal gaseous tar over Y-type zeolites[J]. Fuel,2016,180:205−210. doi: 10.1016/j.fuel.2016.03.101
    [14] LI G, YAN L, ZHAO R, LI F. Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5[J]. Fuel,2014,130:154−159. doi: 10.1016/j.fuel.2014.04.027
    [15] AMIN M N, LI Y, RAZZAQ R, LU X, LI C, ZHANG S. Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor[J]. J Anal Appl Pyrolysis,2016,118:54−62. doi: 10.1016/j.jaap.2015.11.019
    [16] LIU T, CAO J, ZHAO X, WANG J, REN X, FAN X, ZHAO Y, WEI X. In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst[J]. Fuel Process Technol,2017,160:19−26. doi: 10.1016/j.fuproc.2017.02.012
    [17] GENG H, LI L, LI G, WEI Y, FAN H, JIN L, HU H. Pyrolysis behaviors of coal-related model compounds catalyzed by pyrite[J]. Fuel,2020,262:116526. doi: 10.1016/j.fuel.2019.116526
    [18] YAN X, TONG X, WANG J, GONG C, ZHANG M, LIANG L. Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application[J]. J Alloys Compd,2014,593:184−189. doi: 10.1016/j.jallcom.2014.01.036
    [19] PEIQING Z, XIANGSHENG W, XINWEN G, HONGCHEN G, LEPING Z, YONGKANG H. Characterization of modified nanoscale ZSM-5 zeolite and its application in the olefins reduction in FCC gasoline[J]. Catal Lett,2004,92(1):63−68.
    [20] SZOSTAK R, THOMAS T L. Reassessment of zeolite and molecular sieve framework infrared vibrations[J]. J Catal,1986,101(2):549−552. doi: 10.1016/0021-9517(86)90286-1
    [21] ZAKARIA Z Y, LINNEKOSKI J, AMIN N A S. Catalyst screening for conversion of glycerol to light olefins[J]. Chem Eng J,2012,207−208:803−813. doi: 10.1016/j.cej.2012.07.072
    [22] VESES A, PUÉRTOLAS B, CALLÉN M S, GARCÍA T. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties[J]. Microporous Mesoporous Mater,2015,209:189−196. doi: 10.1016/j.micromeso.2015.01.012
    [23] YUNG M M, STARACE A K, MUKARAKATE C, CROW A M, LESHNOV M A, MAGRINI K A. Biomass catalytic pyrolysis on Ni/ZSM-5: Effects of nickel pretreatment and loading[J]. Energy Fuels,2016,30(7):5259−5268. doi: 10.1021/acs.energyfuels.6b00239
    [24] KONG L, LI G, JIN L, HU H. Effects of the oxygen substituent on the pyrolysis of phenyl ethers on a fixed-bed reactor[J]. J Anal Appl Pyrolysis,2015,115:362−369. doi: 10.1016/j.jaap.2015.08.020
  • 加载中
图(16)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-02-10
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回