留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析

王越 马亚亚 莫文龙 龚文涛 马凤云 樊星 魏贤勇 张书培

王越, 马亚亚, 莫文龙, 龚文涛, 马凤云, 樊星, 魏贤勇, 张书培. 和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60055-5
引用本文: 王越, 马亚亚, 莫文龙, 龚文涛, 马凤云, 樊星, 魏贤勇, 张书培. 和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60055-5
WANG Yue, MA Ya-ya, MO Wen-long, GONG Wen-tao, MA Feng-yun, FAN Xing, WEI Xian-yong, ZHANG Shu-pei. Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60055-5
Citation: WANG Yue, MA Ya-ya, MO Wen-long, GONG Wen-tao, MA Feng-yun, FAN Xing, WEI Xian-yong, ZHANG Shu-pei. Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60055-5

和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析

doi: 10.1016/S1872-5813(21)60055-5
详细信息
    作者简介:

    王越(1995-),男,山东聊城人,研究生。Tel:13109970984,E-mail:374331928@qq.com

    通讯作者:

    莫文龙(1987-),男,博士,副教授,研究方向:煤炭转化。Tel:0991-8582059,E-mail:mowenlong@xju.edu.cn

  • 中图分类号: O657.3

Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis

  • 摘要: 以酸洗和丰次烟煤为研究对象,依次采用石油醚、二硫化碳、甲醇、丙酮和丙酮/二硫化碳对煤样进行超声五级萃取,每级萃取物和萃余物分别记为Ei和Rii=1、2、3、4、5)。通过对Ei及Ri进行FTIR表征,借助分段分峰拟合手段分析了萃取产物的分子结构。结果表明,五级萃取物的羟基氢键结构均以自缔合羟基氢键为主;在脂肪类物质中,除第三级萃取物E3以脂肪族-CH3和不对称的-CH2伸缩振动为主之外,其余几级萃取物均以对称和不对称的-CH2伸缩振动为主;E1主要以脂肪链末端-CH3的对称弯曲振动和-CH3、-CH2的不对称变形振动为主,说明石油醚主要将煤样中易于解离的化学键断裂;五级萃取中CS2溶解了更大比例的含脂肪侧链的芳香结构。各级萃余物所含官能团种类相同,说明煤样主体结构并未因逐级萃取而发生改变。萃取对残渣中芳香结构和羟基氢键结构影响较大。其中,酸洗煤样以苯环二取代为主,而萃取后以苯环四取代为主。萃取前,酸洗煤样中羟基氢键结构以羟基醚氢键为主,而萃取后转变成以自缔合羟基氢键为主。另外,分级萃取对含氧官能团和脂肪类官能团影响较小。对比红外结构参数,发现E1、E3及R5有较高的芳环缩合度,E4的脂肪直链较长、支链较少。
  • 图  1  HFAC样品五级萃取流程图

    Figure  1.  sequential extraction process of sample HFAC

    图  2  煤样(HFAC)五级萃取物红外谱图

    Figure  2.  FT-IR spectrogram of extracts from HFAC coal

    图  3  700−900 cm−1段萃取物红外分峰图

    Figure  3.  FT-IR curve-fitting results of the extracts (700−900 cm−1)

    图  4  1000−1800 cm−1段萃取物红外分峰图

    Figure  4.  FT-IR curve-fitting results of the extracts (1000−1800 cm−1)

    图  5  2800−3000 cm−1段萃取物红外分峰图

    Figure  5.  FT-IR curve-fitting results of the extracts (2800−3000 cm−1)

    图  6  3100−3600 cm−1段萃取物红外分峰图

    Figure  6.  FT-IR curve-fitting results of the extraction (3100−3600 cm−1)

    图  7  煤样(HFAC)及其五级萃余物红外谱图

    Figure  7.  FT-IR spectrogram of HFAC coal and extracts residues from HFAC coal

    图  8  700−900 cm−1段萃余物红外分峰图

    Figure  8.  FT-IR curve-fitting results of the extraction residue (700−900 cm−1)

    图  9  1000−1800 cm−1段萃余物红外分峰图

    Figure  9.  FT-IR curve-fitting results of the extracts residues (1000−1800 cm−1)

    图  10  2800-3000 cm-1段萃余物红外分峰图

    Figure  10.  FT-IR curve-fitting results of the extraction residue (2800-3000 cm-1)

    图  11  3100-3600 cm-1段萃余物红外分峰图

    Figure  11.  FT-IR curve-fitting results of the extraction residue (3100-3600 cm-1)

    表  1  煤样的工业和元素分析

    Table  1.   Proximate and ultimate analyses of the coal samples

    SamplesProximate analysis, %Ultimate analysis, daf%H/C
    MadAdVdafFCdafCHNSO*
    HF5.8821.1842.8157.1974.915.651.500.3717.570.91
    HFAC1.521.8444.3755.6373.055.331.500.3819.740.88
    下载: 导出CSV

    表  2  五种样品红外光谱分峰拟合各吸收峰面积比例

    Table  2.   Parameters of FT-IR spectrum for five samples by curve-fitting

    Band position/cm−1Functional groupsArea percentage/%
    E1E2E3E4E5
    900−860five adjacent H deformation10.1310.95021.248.28
    860−810four adjacent H deformations22.5457.0517.2140.5636.04
    810−750three adjacent H deformations39.2224.2456.9516.188.10
    750−720two adjacent H deformations28.117.7725.8422.0347.59
    1710carboxylic acids C=O11.4821.6113.5912.7819.54
    1650conjugated C=O4.7314.4810.3421.5115.39
    1500aromatic C=C1.262.864.218.469.67
    1436asymmetric -CH3, -CH236.5620.203.1814.5613.01
    1371CH3-Ar, R16.8011.883.5510.009.75
    1269symmetric deformation -CH38.9512.3215.4510.6113.30
    1165C-O phenols2.548.3725.919.438.07
    1110grease C-O9.535.1920.948.396.12
    1035alkyl ethers7.843.092.844.265.16
    2950aliphatic -CH322.5624.1631.6714.4223.15
    2920asymmetric aliphatic -CH229.1226.2134.8039.2137.34
    2890aliphatic -CH20.0620.6518.3617.9916.40
    2850symmetric aliphatic -CH228.2728.9815.1728.3923.10
    3600−3500OH -π17.4316.2014.8633.789.41
    3500−3350self-associated OH53.6739.4055.8040.7344.94
    3350−3260OH-ether O13.7231.0718.4119.2538.44
    3260−3170cyclic OH15.1913.3310.936.247.21
    下载: 导出CSV

    表  3  五级萃取物的结构参数

    Table  3.   Structural parameters of five samples derived from the FT-IR spectrum

    SampleDOCA(CH2)/A(CH3)
    E116.191.28
    E23.241.08
    E313.031.06
    E40.902.71
    E50.341.61
    下载: 导出CSV

    表  4  六种样品红外光谱分峰拟合各吸收峰面积比例

    Table  4.   Parameters of FT-IR spectrum for six samples by curve-fitting

    Band position/cm−1Functional groupsArea percentage/%
    HFACR1R2R3R4R5
    900−860five adjacent H deformation5.4119.8819.1921.6615.0119.02
    860−810four adjacent H deformations11.5243.3443.8244.8438.7841.66
    810−750three adjacent H deformations18.7318.5113.0815.628.8116.81
    750−720two adjacent H deformations64.3418.2723.9117.8937.422.51
    1710carboxylic acids C=O15.9411.4911.5712.5616.9614.68
    1650conjugated C=O19.6723.5722.6623.9821.4122.85
    1500aromatic C=C6.549.968.657.486.409.00
    1436asymmetric -CH3, -CH212.1814.9514.8915.6415.1214.14
    1371CH3-Ar, R7.989.29.519.219.269.27
    1269symmetric deformation -CH39.3310.7511.1411.0711.909.35
    1165C-O phenols9.058.939.488.718.438.42
    1110grease C-O15.697.557.918.366.398.14
    1035alkyl ethers3.623.614.192.994.134.13
    2950aliphatic -CH319.0615.6815.7117.9921.6115.06
    2920asymmetric aliphatic -CH235.8339.6939.0040.8237.3138.15
    2890aliphatic -CH24.9518.1118.6015.5917.0418.34
    2850symmetric aliphatic -CH220.1626.5126.6925.6124.0428.44
    3600−3500OH -π30.5329.1826.7626.237.4231.85
    3500−3350self-associated OH36.2640.1334.7631.0041.1838.01
    3350−3260OH-ether O20.0618.7522.9524.6842.8218.08
    3260−3170cyclic OH13.1511.9415.5318.098.5812.06
    下载: 导出CSV

    表  5  酸洗煤及五级萃余物的结构参数

    Table  5.   Structural parameters of six samples derived from the FT-IR spectrum

    SampleIDOCA(CH2)/A(CH3)’C’
    HFAC0.170.092.530.84
    R10.300.082.540.81
    R20.460.112.490.82
    R30.350.112.280.84
    R40.190.101.720.86
    R50.600.142.550.83
    下载: 导出CSV
  • [1] Kong J, Wei XY, Li ZK, Yan HL, Zong ZM. Identification of organonitrogen and organooxygen compounds in the extraction residue from Buliangou subbituminous coal by FTICRMS[J]. Fuel,2015,171:151−8.
    [2] Zhang ZQ, Kang QN, Wei S, Yun T, Yan GC, Yan KF. Large Scale Molecular Model Construction of Xishan Bituminous Coal[J]. Energy Fuels,2017,31(2):1310−1317. doi: 10.1021/acs.energyfuels.6b02623
    [3] Mathews JP, Chaffee AL. The molecular representations of coal-A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [4] Rathsack P, Kroll M M, Otto M. Analysis of high molecular compounds in pyrolysis liquids from a german brown coal by FT-ICR-MS[J]. Fuel,2014,115:461−468. doi: 10.1016/j.fuel.2013.07.064
    [5] He XQ, Mo WL, Ma YY, Ma FY, Wang Q, Fan X, Wei XY. Effect of swelling treatment by organic solvent on the structure and pyrolysis performance of the direct coal liquefaction residue[J]. Energy Fuels,2020,34(7):8685−8696. doi: 10.1021/acs.energyfuels.0c01031
    [6] Wang SQ, Tang YG, Schobert HH, Guo YN, Gao WC, Lu XK. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis,2013,100:75−80. doi: 10.1016/j.jaap.2012.11.021
    [7] Li FJ, Wei XY, Fan MH, Zong ZM. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review[J]. Appl Energy,2016,170:415−436. doi: 10.1016/j.apenergy.2016.02.131
    [8] Lu HY, Wei XY, Yu R, Peng YL. Sequential Thermal Dissolution of Huolinguole Lignite in Methanol and Ethanol[J]. Energy Fuels,2011,25(6):2741−2745. doi: 10.1021/ef101734f
    [9] Zhao XY, Zong ZM, Cao JP, Ma YM, Han L, Liu GF, Zhao W, Li WY, Xie KC, Bai XF, Wei XY. Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals[J]. Fuel,2008,87(5):565−575.
    [10] Zhou GL, Wu JJ, Miao ZY, Hu XL, Li X, Shi X, Cai ZD. Effects of process paramenters on pore structure of semi-coke prepared by solid heat carrier with dry distination[J]. Int J Min Sci Technol,2013,23(3):423−428. doi: 10.1016/j.ijmst.2013.05.003
    [11] Oenal Y, Ceylan K. Low temperature extractability and solvent swelling of Turkish lignites[J]. Fuel Process Technol,1997,53(1):81−97.
    [12] Ding M, Zhao YP, Dou YQ, Wei XY, Fan Xing, Cao JP, Wang YL, Zong ZM. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol,2015,135:20−24. doi: 10.1016/j.fuproc.2014.09.031
    [13] Li P, Zong ZM, Liu FJ, Wang YG, Wei XY, Fan X, Zhao YP, Zhao W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol,2015,136:1−7. doi: 10.1016/j.fuproc.2014.04.013
    [14] Takanohashi T, Xiao FJ, Yoshida T, Saito I. Difference in Extraction Yields between CS2/NMP and NMP for Upper Freeport Coal[J]. Energy Fuels,2003,17(1):255−256. doi: 10.1021/ef020141h
    [15] Liu FJ, Wei XY, Gui J, Wang YG, Li P, Zong ZM. Characterization of Biomarkers and Structural Features of Condensed Aromatics in Xianfeng Lignite[J]. Energy Fuels,2013,27(NOV. -DEC.):7369−7378.
    [16] 郭振兴, 高春楠, 张春明, 贾利国, 张跃弟, 孙昊, 江春, 秦志宏. 淮北煤两级分次萃取物的红外光谱分析[J]. 煤化工,2006,(06):32−35. doi: 10.3969/j.issn.1005-9598.2006.06.010

    GUO Zhen-xing, GAO Chun-nan, ZHANG Chun-ming, JIA Li-guo, ZHANG Yue-di, SUN Hao, JIANG Chun, QIN Zhi-hong. FTIR Analysis of Extracts from Huaibei Coal by Fractional Extraction[J]. Coal Chem Ind,2006,(06):32−35. doi: 10.3969/j.issn.1005-9598.2006.06.010
    [17] 江春, 孙昊, 张迪, 胡卫新, 秦志宏. FTIR法对准格尔煤两级分次萃取物的分析[J]. 煤炭学报,2007,(01):85−89. doi: 10.3321/j.issn:0253-9993.2007.01.019

    JIANG Chun, SUN Hao, ZHANG Di, HU Wei-xin, QIN Zhi-hong. FTIR analysis of fractional extracts from Zhunge’ er bituminous coal[J]. J China Coal Soc,2007,(01):85−89. doi: 10.3321/j.issn:0253-9993.2007.01.019
    [18] 张硕, 张小东, 丁哲, 郝宗超, 赵家攀. 不同溶剂抽提下高阶煤的化学组成和结构变化[J]. 煤炭转化,2016,39(03):1−5. doi: 10.3969/j.issn.1004-4248.2016.03.001

    ZHANG Suo, ZHANG Xiao-dong, DING Zhe, HAO Zong-chao, ZHAO Jia-pan. Chemical composition and structure change of high rank coal extracted by different solvents[J]. Coal Convers,2016,39(03):1−5. doi: 10.3969/j.issn.1004-4248.2016.03.001
    [19] 王晓华, 魏贤勇, 宗志敏. 溶剂分级萃取法研究平朔煤的化学组成特征[J]. 煤炭转化,2006,(02):4−7. doi: 10.3969/j.issn.1004-4248.2006.02.002

    WANG Xiao-hua, WEI Xian-yong, ZONG Zhi-min. Study on Chemical Constituent Characteristic of Fractionated Extraction From Pingshuo Coal[J]. Coal Convers,2006,(02):4−7. doi: 10.3969/j.issn.1004-4248.2006.02.002
    [20] Li J, Feng J, Li WY, Chang HZ, Xie KC. Effect of hydrogen bond on coal extraction by in-situ vacuum FTIR[J]. Energy Sources, Part A,2009,31:1660−1665. doi: 10.1080/15567030903021970
    [21] Tahmasebi A, Jiang Y, Yu JL, Li XC. Solvent extraction of Chinese lignite and chemical structure changes of the residue during H2O2 oxidation[J]. Fuel Process Technol,2015,129:213−221. doi: 10.1016/j.fuproc.2014.09.024
    [22] 余坤坤, 张小东, 张硕, 杜志刚. 不同煤岩成分的焦煤萃取后FTIR特征研究[J]. 光谱学与光谱分析,2018,38(10):3077−3083.

    YU Kun-kun, ZHANG Xiao-dong, ZHANG Shuo, DU Zhi-gang. The FTIR Characteristics of Extracted Coking Coal in Different Macrolithotype[J]. Spectrosc Spectral Anal,2018,38(10):3077−3083.
    [23] Wang YN, Wei XY, Li ZK, Yan HL, Wang TM, Zhang YY, Zong ZM, Ma FY, Liu JM. Extraction and thermal dissolution of Piliqing subbituminous coal[J]. Fuel,2017,200(JUL. 15):282−289.
    [24] 张祥成, 孟永彪, 马凤云, 刘景梅. 酸洗处理对新疆和丰煤结构的影响[J]. 河南科技大学学报(自然科学版),2019,40(06):89−94+10.

    ZHANG Xiang-cheng, MENG Yong-biao, MA Feng-yun, LIU Jing-mei. Effect of acid-washing treatment on structure of Xingjiang Hefeng coal[J]. J Henan Univ Sci Technol, Nat Sci,2019,40(06):89−94+10.
    [25] Ma YY, Ma FY, Mo WL, Wang Q. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue[J]. Fuel,2019,266:117039.
    [26] Liu LL, Yuan Y, Kumar S, Wang ZH, He Y, Lv Y, Liu JZ, Cen KF. Catalytic effect of metal chlorides on coal pyrolysis and gasification part II. Effects of acid washing on coal characteristics[J]. Thermochim Acta,2018,666:41−50. doi: 10.1016/j.tca.2018.06.001
    [27] Qin ZH, Chen H, Yan YJ, Li CS, Rong LM, Yang XQ. FTIR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents[J]. Fuel Process Technol,2015,133:14−19. doi: 10.1016/j.fuproc.2015.01.001
    [28] Zhao Y, Qiu PH, Chen G, Pei JT, Sun SZ, Liu L, Liu HP. Selective enrichment of chemical structure during first grinding of Zhundong coal and its effect on pyrolysis reactivity[J]. Fuel,2017,189:46−56. doi: 10.1016/j.fuel.2016.10.083
    [29] He XQ, Liu XF, Nie BS, Song DZ. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555−563. doi: 10.1016/j.fuel.2017.05.101
    [30] Wang SQ, Tang YG, Schobert HH. , Guo YN, Su YF. FTIR and 13C-NMR Investigation of Coal Component of Late Permian Coals from Southern China[J]. Energy Fuels,2011,25:5672−5677. doi: 10.1021/ef201196v
    [31] 程雪云, 李梅, 孙功成, 金权, 李佳佳, 徐荣声. 烟煤和褐煤分级萃取物的GC/MS分析[J]. 煤炭转化,2020,43(02):1−10.

    CHENG Xue-yun, LI Mei, SUN Gong-cheng, JIN Quan, LI Jia-jia, XU Rong-sheng. GC/MS Analysis of Bituminous Coal and Lignite Extracts by Different Solvents[J]. Coal Convers,2020,43(02):1−10.
    [32] 杜姣姣, 赵云鹏, 田由甲, 张迪. 白音华褐煤可溶有机质的组成和结构特征[J]. 燃料化学学报,2017,45(01):9−14. doi: 10.3969/j.issn.0253-2409.2017.01.002

    DU Jiao-jiao, ZHAO Yun-peng, TIAN You-jia, ZHANG Di. Composition and structural characteristics of soluble organic species in Baiyinhua lignite[J]. J Fuel Chem Technol,2017,45(01):9−14. doi: 10.3969/j.issn.0253-2409.2017.01.002
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-08

目录

    /

    返回文章
    返回