留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析

王越 马亚亚 莫文龙 龚文涛 马凤云 魏贤勇 樊星 张书培

王越, 马亚亚, 莫文龙, 龚文涛, 马凤云, 魏贤勇, 樊星, 张书培. 和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析[J]. 燃料化学学报(中英文), 2021, 49(7): 890-901. doi: 10.1016/S1872-5813(21)60055-5
引用本文: 王越, 马亚亚, 莫文龙, 龚文涛, 马凤云, 魏贤勇, 樊星, 张书培. 和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析[J]. 燃料化学学报(中英文), 2021, 49(7): 890-901. doi: 10.1016/S1872-5813(21)60055-5
WANG Yue, MA Ya-ya, MO Wen-long, GONG Wen-tao, MA Feng-yun, WEI Xian-yong, FAN Xing, ZHANG Shu-pei. Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 890-901. doi: 10.1016/S1872-5813(21)60055-5
Citation: WANG Yue, MA Ya-ya, MO Wen-long, GONG Wen-tao, MA Feng-yun, WEI Xian-yong, FAN Xing, ZHANG Shu-pei. Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 890-901. doi: 10.1016/S1872-5813(21)60055-5

和丰次烟煤逐级萃取物和萃余物官能团组成FT-IR分析

doi: 10.1016/S1872-5813(21)60055-5
基金项目: 新疆大学高层次人才项目“新疆典型重质碳资源的高值化利用”,新疆维吾尔自治区引进高层次人才天池计划和煤炭加工与高效洁净利用教育部重点实验室(中国矿业大学)开放基金资助
详细信息
    作者简介:

    王越(1995-),男,山东聊城人,研究生。Tel:13109970984,E-mail:374331928@qq.com

    通讯作者:

    Tel:0991-8582059,13641538902, E-mail:mowenlong@xju.edu.cn

    wei_xianyong@163.com

  • 中图分类号: O657.3

Functional groups of sequential extracts and corresponding residues from Hefeng sub-bituminous coal based on FT-IR analysis

Funds: The project was supported by the High-Level Talents Project from Xinjiang University, the Tianchi Project for Introducing High-Level Talents to Xinjiang Uyghur Autonomous Region (China) and the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education.
  • 摘要: 以酸洗和丰次烟煤为研究对象,依次采用石油醚、二硫化碳、甲醇、丙酮和丙酮/二硫化碳对煤样进行超声五级萃取,每级萃取物和萃余物分别记为Ei和Rii=1、2、3、4、5)。通过对Ei及Ri进行FT-IR表征,借助分段分峰拟合手段分析了萃取产物的分子结构。结果表明,五级萃取物的羟基氢键结构均以自缔合羟基氢键为主;在脂肪类物质中,除第三级萃取物E3以脂肪族−CH3和不对称的−CH2伸缩振动为主之外,其余几级萃取物均以对称和不对称的−CH2伸缩振动为主;E1主要以脂肪链末端−CH3的对称弯曲振动和−CH3、−CH2的不对称变形振动为主,说明石油醚主要将煤样中易于解离的化学键断裂;五级萃取中CS2溶解了更大比例的含脂肪侧链的芳香结构。各级萃余物所含官能团种类相同,说明煤样主体结构并未因逐级萃取而发生改变。萃取对残渣中芳香结构和羟基氢键结构影响较大。其中,酸洗煤样以苯环二取代为主,而萃取后以苯环四取代为主。萃取前,酸洗煤样中羟基氢键结构以羟基醚氢键为主,而萃取后转变成以自缔合羟基氢键为主。另外,分级萃取对含氧官能团和脂肪类官能团影响较小。对比红外结构参数发现,E1、E3及R5有较高的芳环缩合度,E4的脂肪直链较长、支链较少。
  • FIG. 794.  FIG. 794.

    FIG. 794.  FIG. 794.

    图  1  HFAC样品的五级萃取流程图

    Figure  1  Sequential extraction process of sample HFAC

    图  2  煤样(HFAC)五级萃取物的红外光谱谱图

    Figure  2  FT-IR spectrogram of extracts from HFAC coal

    图  3  700−900 cm−1段萃取物的红外分峰谱图

    Figure  3  FT-IR curve-fitting results of the extracts (700−900 cm−1)

    图  4  1000−1800 cm−1段萃取物的红外分峰谱图

    Figure  4  FT-IR curve-fitting results of extracts (1000−1800 cm−1)

    图  5  2800−3000 cm−1段萃取物的红外分峰谱图

    Figure  5  FT-IR curve-fitting results of extracts (2800−3000 cm−1)

    图  6  3100−3600 cm−1段萃取物的红外分峰谱图

    Figure  6  FT-IR curve-fitting results of extracts (3100−3600 cm−1)

    图  7  煤样(HFAC)及其五级萃余物的红外光谱谱图

    Figure  7  FT-IR spectrogram of HFAC and residues from HFAC

    图  8  700−900 cm−1段萃余物的红外分峰谱图

    Figure  8  FT-IR curve-fitting results of the extraction residue (700−900 cm−1)

    图  9  1000−1800 cm−1段萃余物的红外分峰谱图

    Figure  9  FT-IR curve-fitting results of the extracts residues (1000−1800 cm−1)

    图  10  2800−3000 cm−1段萃余物的红外分峰谱图

    Figure  10  FT-IR curve-fitting results of the extraction residue (2800−3000 cm−1)

    图  11  3100−3600 cm−1段萃余物的红外分峰谱图

    Figure  11  FT-IR curve-fitting results of the extraction residue (3100−3600 cm−1)

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of the coal samples

    SampleProximate analysis w/%Ultimate analysis wdaf/%H/C
    MadAdVdafFCdafCHNSO*
    HF5.8821.1842.8157.1974.915.651.500.3717.570.91
    HFAC1.521.8444.3755.6373.055.331.500.3819.740.88
    下载: 导出CSV

    表  2  五种样品红外光谱分峰拟合各吸收峰面积比例

    Table  2  Parameters of FT-IR spectrum for five samples by curve-fitting

    Band position/cm−1Functional groupsArea percentage/%
    E1E2E3E4E5
    900−860five adjacent H deformation10.1310.95021.248.28
    860−810four adjacent H deformations22.5457.0517.2140.5636.04
    810−750three adjacent H deformations39.2224.2456.9516.188.10
    750−720two adjacent H deformations28.117.7725.8422.0347.59
    1710carboxylic acids C=O11.4821.6113.5912.7819.54
    1650conjugated C=O4.7314.4810.3421.5115.39
    1500aromatic C=C1.262.864.218.469.67
    1436asymmetric −CH3, −CH236.5620.203.1814.5613.01
    1371CH3-Ar, R16.8011.883.5510.009.75
    1269symmetric deformation −CH38.9512.3215.4510.6113.30
    1165C−O phenols2.548.3725.919.438.07
    1110grease C−O9.535.1920.948.396.12
    1035alkyl ethers7.843.092.844.265.16
    2950aliphatic −CH322.5624.1631.6714.4223.15
    2920asymmetric aliphatic −CH229.1226.2134.8039.2137.34
    2890aliphatic −CH20.0620.6518.3617.9916.40
    2850symmetric aliphatic −CH228.2728.9815.1728.3923.10
    3600−3500OH−π17.4316.2014.8633.789.41
    3500−3350self-associated OH53.6739.4055.8040.7344.94
    3350−3260OH-ether O13.7231.0718.4119.2538.44
    3260−3170cyclic OH15.1913.3310.936.247.21
    下载: 导出CSV

    表  3  五级萃取物的结构参数

    Table  3  Structural parameters of five samples derived from the FT-IR spectrum

    SampleDOCA(CH2)/A(CH3)
    E116.191.28
    E23.241.08
    E313.031.06
    E40.902.71
    E50.341.61
    下载: 导出CSV

    表  4  六种样品红外光谱分峰拟合各吸收峰面积比例

    Table  4  Parameters of FT-IR spectrum for six samples by curve-fitting

    Band position/cm−1Functional groupsArea percentage/%
    HFACR1R2R3R4R5
    900−860five adjacent H deformation5.4119.8819.1921.6615.0119.02
    860−810four adjacent H deformations11.5243.3443.8244.8438.7841.66
    810−750three adjacent H deformations18.7318.5113.0815.628.8116.81
    750−720two adjacent H deformations64.3418.2723.9117.8937.422.51
    1710carboxylic acids C=O15.9411.4911.5712.5616.9614.68
    1650conjugated C=O19.6723.5722.6623.9821.4122.85
    1500aromatic C=C6.549.968.657.486.409.00
    1436asymmetric −CH3, −CH212.1814.9514.8915.6415.1214.14
    1371CH3-Ar, R7.989.29.519.219.269.27
    1269symmetric deformation −CH39.3310.7511.1411.0711.909.35
    1165C−O phenols9.058.939.488.718.438.42
    1110grease C−O15.697.557.918.366.398.14
    1035alkyl ethers3.623.614.192.994.134.13
    2950aliphatic −CH319.0615.6815.7117.9921.6115.06
    2920asymmetric aliphatic −CH235.8339.6939.0040.8237.3138.15
    2890aliphatic −CH24.9518.1118.6015.5917.0418.34
    2850symmetric aliphatic −CH220.1626.5126.6925.6124.0428.44
    3600−3500OH−π30.5329.1826.7626.237.4231.85
    3500−3350self-associated OH36.2640.1334.7631.0041.1838.01
    3350−3260OH-ether O20.0618.7522.9524.6842.8218.08
    3260−3170cyclic OH13.1511.9415.5318.098.5812.06
    下载: 导出CSV

    表  5  酸洗煤及五级萃余物的结构参数

    Table  5  Structural parameters of six samples derived from the FT-IR spectrum

    SampleIDOCA(CH2)/A(CH3)$ 'C' $
    HFAC0.170.092.530.84
    R10.300.082.540.81
    R20.460.112.490.82
    R30.350.112.280.84
    R40.190.101.720.86
    R50.600.142.550.83
    下载: 导出CSV
  • [1] KONG J, WEI X Y, LI Z K, YAN H L, ZONG Z M. Identification of organonitrogen and organooxygen compounds in the extraction residue from Buliangou subbituminous coal by FTICRMS[J]. Fuel,2015,171:151−8.
    [2] ZHANG Z Q, KANG Q N, WEI S, YUN T, YAN G C, YAN K F. Large scale molecular model construction of Xishan bituminous coal[J]. Energy Fuels,2017,31(2):1310−1317. doi: 10.1021/acs.energyfuels.6b02623
    [3] MATHEWS J P, CHAFFEE A L. The molecular representations of coal-A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [4] RATHSACK P, KROLL M M, OTTO M. Analysis of high molecular compounds in pyrolysis liquids from a German brown coal by FT-ICR-MS[J]. Fuel,2014,115:461−468. doi: 10.1016/j.fuel.2013.07.064
    [5] HE X Q, MO W L, MA Y Y, MA F Y, WANG Q, FAN X, WEI X Y. Effect of swelling treatment by organic solvent on the structure and pyrolysis performance of the direct coal liquefaction residue[J]. Energy Fuels,2020,34(7):8685−8696. doi: 10.1021/acs.energyfuels.0c01031
    [6] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis,2013,100:75−80. doi: 10.1016/j.jaap.2012.11.021
    [7] LI F J, WEI X Y, FAN M H, ZONG Z M. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review[J]. Appl Energy,2016,170:415−436. doi: 10.1016/j.apenergy.2016.02.131
    [8] LU H Y, WEI X Y, YU R, PENG Y L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels,2011,25(6):2741−2745. doi: 10.1021/ef101734f
    [9] ZHAO X Y, ZONG Z M, CAO J P, MA Y M, HAN L, LIU G F, ZHAO W, LI W Y, XIE K C, BAI X F, WEI X Y. Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals[J]. Fuel,2008,87(5):565−575.
    [10] ZHOU G L, WU J J, MIAO Z Y, HU X L, LI X, SHI X, CAI Z D. Effects of process parameters on pore structure of semi-coke prepared by solid heat carrier with dry distillation[J]. Int J Min Sci Technol,2013,23(3):423−428. doi: 10.1016/j.ijmst.2013.05.003
    [11] OENAL Y, CEYLAN K. Low temperature extractability and solvent swelling of Turkish lignites[J]. Fuel Process Technol,1997,53(1):81−97.
    [12] DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN XING, CAO J P, WANG Y L, ZONG Z M. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol,2015,135:20−24. doi: 10.1016/j.fuproc.2014.09.031
    [13] LI P, ZONG Z M, LIU F J, WANG Y G, WEI X Y, FAN X, ZHAO Y P, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu-Fugu subbituminous coal[J]. Fuel Process Technol,2015,136:1−7. doi: 10.1016/j.fuproc.2014.04.013
    [14] TAKANOHASHI T, XIAO F J, YOSHIDA T, SAITO I. Difference in extraction yields between CS2/NMP and NMP for upper freeport coal[J]. Energy Fuels,2003,17(1):255−256. doi: 10.1021/ef020141h
    [15] LIU F J, WEI X Y, GUI J, WANG Y G, LI P, ZONG Z M. Characterization of biomarkers and structural features of condensed aromatics in Xianfeng lignite[J]. Energy Fuels,2013,27:7369−7378.
    [16] 郭振兴, 高春楠, 张春明, 贾利国, 张跃弟, 孙昊, 江春, 秦志宏. 淮北煤两级分次萃取物的红外光谱分析[J]. 煤化工,2006,34(6):32−35. doi: 10.3969/j.issn.1005-9598.2006.06.010

    GUO Zhen-xing, GAO Chun-nan, ZHANG Chun-ming, JIA Li-guo, ZHANG Yue-di, SUN Hao, JIANG Chun, QIN Zhi-hong. FTIR analysis of extracts from Huaibei coal by fractional extraction[J]. Coal Chem Ind,2006,34(6):32−35. doi: 10.3969/j.issn.1005-9598.2006.06.010
    [17] 江春, 孙昊, 张迪, 胡卫新, 秦志宏. FTIR法对准格尔煤两级分次萃取物的分析[J]. 煤炭学报,2007,32(1):85−89. doi: 10.3321/j.issn:0253-9993.2007.01.019

    JIANG Chun, SUN Hao, ZHANG Di, HU Wei-xin, QIN Zhi-hong. FTIR analysis of fractional extracts from Zhunge’ er bituminous coal[J]. J China Coal Soc,2007,32(1):85−89. doi: 10.3321/j.issn:0253-9993.2007.01.019
    [18] 张硕, 张小东, 丁哲, 郝宗超, 赵家攀. 不同溶剂抽提下高阶煤的化学组成和结构变化[J]. 煤炭转化,2016,39(3):1−5. doi: 10.3969/j.issn.1004-4248.2016.03.001

    ZHANG Suo, ZHANG Xiao-dong, DING Zhe, HAO Zong-chao, ZHAO Jia-pan. Chemical composition and structure change of high rank coal extracted by different solvents[J]. Coal Convers,2016,39(3):1−5. doi: 10.3969/j.issn.1004-4248.2016.03.001
    [19] 王晓华, 魏贤勇, 宗志敏. 溶剂分级萃取法研究平朔煤的化学组成特征[J]. 煤炭转化,2006,29(2):4−7. doi: 10.3969/j.issn.1004-4248.2006.02.002

    WANG Xiao-hua, WEI Xian-yong, ZONG Zhi-min. Study on chemical constituent characteristic of fractionated extraction from Pingshuo coal[J]. Coal Convers,2006,29(2):4−7. doi: 10.3969/j.issn.1004-4248.2006.02.002
    [20] LI J, FENG J, LI W Y, CHANG H Z, XIE K C. Effect of hydrogen bond on coal extraction by in-situ vacuum FTIR[J]. Energy Sources, Part A,2009,31:1660−1665. doi: 10.1080/15567030903021970
    [21] TAHMASEBI A, JIANG Y, YU J L, LI X C. Solvent extraction of Chinese lignite and chemical structure changes of the residue during H2O2 oxidation[J]. Fuel Process Technol,2015,129:213−221. doi: 10.1016/j.fuproc.2014.09.024
    [22] 余坤坤, 张小东, 张硕, 杜志刚. 不同煤岩成分的焦煤萃取后FTIR特征研究[J]. 光谱学与光谱分析,2018,38(10):3077−3083.

    YU Kun-kun, ZHANG Xiao-dong, ZHANG Shuo, DU Zhi-gang. The FTIR characteristics of extracted coking coal in different macrolithotype[J]. Spectrosc Spectral Anal,2018,38(10):3077−3083.
    [23] WANG Y N, WEI X Y, LI Z K, YAN H L, WANG T M, ZHANG Y Y, ZONG Z M, MA F Y, LIU J M. Extraction and thermal dissolution of Piliqing subbituminous coal[J]. Fuel,2017,200:282−289.
    [24] 张祥成, 孟永彪, 马凤云, 刘景梅. 酸洗处理对新疆和丰煤结构的影响[J]. 河南科技大学学报(自然科学版),2019,40(6):89−94+10.

    ZHANG Xiang-cheng, MENG Yong-biao, MA Feng-yun, LIU Jing-mei. Effect of acid-washing treatment on structure of Xingjiang Hefeng coal[J]. J Henan Univ Sci Technol, Nat Sci,2019,40(6):89−94+10.
    [25] MA Y Y, MA F Y, MO W L, WANG Q. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue[J]. Fuel,2019,266:117039.
    [26] LIU L L, YUAN Y, KUMAR S, WANG Z H, HE Y, LV Y, LIU J Z, CEN K F. Catalytic effect of metal chlorides on coal pyrolysis and gasification part II. Effects of acid washing on coal characteristics[J]. Thermochim Acta,2018,666:41−50. doi: 10.1016/j.tca.2018.06.001
    [27] QIN Z H, CHEN H, YAN Y J, LI C S, RONG L M, YANG X Q. FTIR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents[J]. Fuel Process Technol,2015,133:14−19. doi: 10.1016/j.fuproc.2015.01.001
    [28] ZHAO Y, QIU P H, CHEN G, PEI J T, SUN S Z, LIU L, LIU H P. Selective enrichment of chemical structure during first grinding of Zhundong coal and its effect on pyrolysis reactivity[J]. Fuel,2017,189:46−56. doi: 10.1016/j.fuel.2016.10.083
    [29] HE X Q, LIU X F, NIE B S, SONG D Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555−563. doi: 10.1016/j.fuel.2017.05.101
    [30] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, SU Y F. FTIR and 13C-NMR investigation of coal component of late Permian coals from southern China[J]. Energy Fuels,2011,25:5672−5677. doi: 10.1021/ef201196v
    [31] 程雪云, 李梅, 孙功成, 金权, 李佳佳, 徐荣声. 烟煤和褐煤分级萃取物的GC/MS分析[J]. 煤炭转化,2020,43(2):1−10.

    CHENG Xue-yun, LI Mei, SUN Gong-cheng, JIN Quan, LI Jia-jia, XU Rong-sheng. GC/MS analysis of bituminous coal and lignite extracts by different solvents[J]. Coal Convers,2020,43(2):1−10.
    [32] 杜姣姣, 赵云鹏, 田由甲, 张迪. 白音华褐煤可溶有机质的组成和结构特征[J]. 燃料化学学报,2017,45(1):9−14. doi: 10.3969/j.issn.0253-2409.2017.01.002

    DU Jiao-jiao, ZHAO Yun-peng, TIAN You-jia, ZHANG Di. Composition and structural characteristics of soluble organic species in Baiyinhua lignite[J]. J Fuel Chem Technol,2017,45(1):9−14. doi: 10.3969/j.issn.0253-2409.2017.01.002
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  194
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-02-09
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回