留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In2O3/SSZ-13催化CO2加氢高选择性合成液化石油气

卢思宇 杨海艳 杨承广 高鹏 孙予罕

卢思宇, 杨海艳, 杨承广, 高鹏, 孙予罕. In2O3/SSZ-13催化CO2加氢高选择性合成液化石油气[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60057-9
引用本文: 卢思宇, 杨海艳, 杨承广, 高鹏, 孙予罕. In2O3/SSZ-13催化CO2加氢高选择性合成液化石油气[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60057-9
Lu Siyu, Yang Haiyan, Yang Chengguang, Gao Peng, Sun Yuhan. Highly Selective Synthesis of LPG from CO2 Hydrogenation over In2O3/SSZ-13 Binfunctional Catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60057-9
Citation: Lu Siyu, Yang Haiyan, Yang Chengguang, Gao Peng, Sun Yuhan. Highly Selective Synthesis of LPG from CO2 Hydrogenation over In2O3/SSZ-13 Binfunctional Catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60057-9

In2O3/SSZ-13催化CO2加氢高选择性合成液化石油气

doi: 10.1016/S1872-5813(21)60057-9
基金项目: 国家自然科学基金(21773286,U1832162),中国科学院青年创新促进会(2018330),中国科学院洁净能源先导科技专项(XDA21090204),上海市青年科技启明星计划(19QA1409900)项目资助
详细信息
    作者简介:

    卢思宇:lusiyu2018@sari.ac.cn

    通讯作者:

    Email: gaopeng@sari.ac.cn (P.G.) Tel.: +86-20350994 (P.G.)

    Email: sunyh@sari.ac.cn (Y.S.) +86-21-20325009 (Y.S.)

  • 中图分类号: O643

Highly Selective Synthesis of LPG from CO2 Hydrogenation over In2O3/SSZ-13 Binfunctional Catalyst

Funds: The projected was supported by the National Natural Science Foundation of China (21773286, U1832162), Youth innovation Promotion Association CAS (218330), “Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21090204), the Shanghai Rising-Star Program, China (19QA1409900)
  • 摘要: 通过In2O3/SSZ-13双功能催化剂实现了二氧化碳(CO2)加氢高选择性合成液化石油气(LPG)。利用X射线衍射(XRD)、N2吸附/脱附、扫描电镜(SEM)、透射电镜(TEM)、NH3程序升温脱附(NH3-TPD)等表征手段对双功能催化剂的物化性质进行了表征。在固定床反应器上研究了氧化铟的颗粒尺寸、反应条件对In2O3/SSZ-13催化二氧化碳加氢制液化石油气性能的影响。结果表明,SSZ-13分子筛的8元环结构和强酸性位点有利于丙烷的选择性生成,初始晶粒尺寸为5 nm的氧化铟具有最高的CO2转化率(11.7%)和CO选择性(61.0%),而烃类产物分布受In2O3尺寸影响较小,其中,烃类产物中LPG(C30和C40)的选择性基本维持在90%左右,其中丙烷选择性约为75%。增加反应压力、降低反应空速更有利于LPG收率的提高,在350 °C,3 MPa,9000 mL·gcat−1·h−1的反应条件下,In2O3/SSZ-13双功能催化剂连续运行100 h以上,依然具有较高的活性稳定性。本研究为CO2加氢高选择合成液化石油气提供了新的探索途径。
  • 图  1  In2O3/SSZ-13双功能催化剂及SSZ-13分子筛的XRD图

    Figure  1.  XRD patterns of In2O3-x/SSZ-13 composite catalysts and SSZ-13 zeolite

    图  2  SSZ-13的SEM及粒径分布(&) SSZ-13分子筛,氧化铟的TEM图及粒径分布 (b) In2O3-300,(c) In2O3-500,(d) In2O3-700

    Figure  2.  SEM images and size distribution (insert) of SSZ-13 zeolite (a) SSZ-13, TEM images and size distribution (insert) of In2O3-x samples (b) In2O3-300,(c) In2O3-500, (d) In2O3-700

    图  3  In2O3-x/SSZ-13及SSZ-13分子筛的N2物理吸附脱附曲线图

    Figure  3.  N2 isothermal adsorption-desorption curves of the In2O3/SSZ-13 composite catalyst and SSZ-13 zeolite

    图  4  In2O3-x/SSZ-13及SSZ-13分子筛的NH3-TPD

    Figure  4.  NH3-TPD patterns of In2O3-x/SSZ-13 composite catalysts and SSZ-13 zeolite.

    图  5  In2O3-300/SSZ-13(In2O3:SSZ-13=1:2)双功能催化剂上CO2加氢制LPG反应性能

    Figure  5.  The catalytic performance for CO2 hydrogenation to LPG over In2O3-300/SSZ-13 composite catalyst. Reaction conditions: 350 °C,H2/CO2= 3,WHSV = 9000 mL·gcat–1·h–1, mass ratio=1:2.

    表  1  In2O3/SSZ-13双功能催化剂的结构性质

    Table  1.   Texture properties of the In2O3x/SSZ-13 composite catalysts.

    SampleSBET
    (m2·g–1)
    Smicro
    (m2·g–1)
    Vmeso
    (cm3·g–1)
    Vmicro
    (cm3·g–1)
    SSZ134874600.350.23
    In2O3-300/SSZ134473800.300.19
    In2O3-500/SSZ134103710.280.18
    In2O3-600/SSZ133943630.280.17
    In2O3-650/SSZ133733440.260.17
    In2O3-700/SSZ133503180.250.16
    下载: 导出CSV

    表  2  双功能催化剂In2O3-x/SSZ-13上的CO2加氢制LPG催化性能

    Table  2.   Catalytic performance for CO2 hydrogenation to LPG over bifunctional catalysts containing In2O3 oxides with different crystal sizes and SSZ-13 zeolites

    SampleCO2 conv. (%)CO sel. (%)Hydrocarbon distribution (% C)STYLPG
    mmol·gcat–1·h–1
    CH4C20LPG (C30)C2=– C4=C5+
    In2O3–300/SSZ1311.761.03.42.290.6 (76.8)2.31.53.99
    In2O3–500/SSZ1311.357.83.22.489.2 (75.7)3.12.24.10
    In2O3–600/SSZ139.856.73.52.389.9 (76.7)2.12.23.68
    In2O3–650/SSZ139.054.23.52.389.8 (76.4)2.32.13.57
    In2O3–700/SSZ137.653.83.62.488.6 (75.5)3.02.43.00
    Standard reaction conditions: In2O3 (0.4 g) + SSZ-13 (0.8 g), T = 350 °C, P = 3.0 MPa, H2/CO2 = 3, WHSV = 9000 mL·gcat –1·h–1. Results from 12 h time on stream.
    下载: 导出CSV

    表  3  In2O3-300/SSZ-13在不同温度下催化CO2加氢制液化石油气的反应性能表

    Table  3.   Catalytic performance for CO2 hydrogenation to LPG over In2O3-300/SSZ-13 catalysts under different reaction temperatures.

    Temperature (°C)CO2 conv. (%)CO sel. (%)Hydrocarbon distribution (% C)STYLPG
    mmol·gcat–1·h–1
    CH4C20LPG (C30)C2=– C4=C5+
    3105.850.54.22.289.5 (74.3)1.92.22.48
    3309.758.83.52.590.8 (77.0)1.91.33.50
    35011.761.03.42.290.6 (76.8)2.31.53.99
    37022.972.23.93.088.5 (75.8)2.52.15.43
    39029.478.36.13.684.8 (72.7)3.52.05.22
    Standard reaction conditions: In2O3(0.4 g)+SSZ-13 (0.8 g), P = 3 MPa, WHSV = 9000 ml·gcat–1·h–1.Results from 12 h time on stream.
    下载: 导出CSV

    表  4  In2O3-300/SSZ-13在不同空速下催化CO2加氢制液化石油气的反应性能表

    Table  4.   Catalytic performance for CO2 hydrogenation to LPG over In2O3-300/SSZ-13 catalysts under different reaction space velocity.

    Space velocity
    mL·gcat–1·h–1
    CO2 conv. (%)CO sel. (%)Hydrocarbon distribution (% C)STYLPG
    mmol·gcat–1·h–1
    CH4C20LPG (C30)C2=– C4=C5+
    300014.967.13.62.490.7 (77.8)1.81.54.29
    600011.962.83.62.391.1 (77.7)2.30.73.89
    900011.761.03.42.290.6 (76.8)2.31.53.99
    1200010.055.43.62.289.1 (75.4)2.92.23.83
    150008.955.03.72.189.0 (75.2)3.41.83.44
    Standard reaction conditions: In2O3(0.4 g)+SSZ-13 (0.8 g), T = 350 °C, P = 3 MPa. Results from 12 h time on stream.
    下载: 导出CSV

    表  5  In2O3-300/SSZ-13在不同压力下催化CO2加氢制液化石油气的反应性能表

    Table  5.   Catalytic performance for CO2 hydrogenation to LPG over In2O3-300/SSZ-13 catalysts under different reaction pressure.

    Pressure (MPa)CO2 conv. (%)CO sel. (%)Hydrocarbon distribution (% C)STYLPG
    mmol·gcat–1·h–1
    CH4C20LPG (C30)C2=– C4=C5+
    1.08.170.92.63.381.8 (70.8)11.11.21.86
    2.09.765.33.12.388.1 (75.5)4.52.02.86
    3.011.761.03.42.290.6 (76.8)2.31.53.99
    4.013.457.63.72.489.4 (75.6)2.02.54.90
    5.015.957.13.82.590.2 (75.9)1.42.15.93
    Standard reaction conditions: In2O3(0.4 g)+SSZ-13 (0.8 g), T = 350 °C, WHSV = 9000 ml·gcat–1·h–1.Results from 12 h time on stream.
    下载: 导出CSV
  • [1] ALVAREZ A, BANSODE A, URAKAWA A, BAVYKINA A V, WEZENDONK T A, MAKKEE M, GASCON J, KAPTEIJN F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117(14):9804−9838. doi: 10.1021/acs.chemrev.6b00816
    [2] LIU X L, WANG M H, ZHOU C, ZHOU W, CHENG K, KANG J C, ZHANG Q H, DENG W P, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Comm,2018,54(2):140−143.
    [3] JIANG X, NIE X, GUO X, SONG C, CHEN J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [4] DAS S, PEREZ RAMIREZ J, GONG J, DEWANGAN N, HIDAJAT K, GATES B. C, KAWI S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2000,49(10):2937−3004.
    [5] GOEPPERT A, CZAUN M, JONES J P, SURYA PRAKASH G K, OLAH G A. Recycling of carbon dioxide to methanol and derived products - closing the loop[J]. Chem Soc Rev,2014,43(23):7995−8048. doi: 10.1039/C4CS00122B
    [6] LI C, YUAN X, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A-Gen,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025
    [7] LI H, ZHANG P, GUO L, HE Y, ZENG Y, THONGKAM M, NATAKARANAKUL J, KOJIMA T, REUBROYCHAROEN P, VITIDSANT T, YANG G, TSUBAKI N. A well-defined core-shell-structured capsule catalyst for direct conversion of CO2 into liquefied petroleum gas[J]. Chem Sus Chem,2020,13(8):2060−2065. doi: 10.1002/cssc.201903576
    [8] GAO P, DANG S, LI S, BU X, LIU Z, QIU M, YANG C, WANG H, ZHONG L, HAN Y, LIU Q, WEI W, SUN Y. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2017,8(1):571−578.
    [9] LI Z L, WANG J J, QU Y Z, LIU H L, TANG C Z, MIAO S, FENG Z C, AN H Y, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7(12):8544−8548. doi: 10.1021/acscatal.7b03251
    [10] LIU X, WANG M, YIN H, HU J, CHENG K, KANG J, ZHANG Q, WANG Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catal,2020,:8303−8314.
    [11] MA Z, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catal,2019,9(3):2639−2656. doi: 10.1021/acscatal.8b05060
    [12] SONG G, LI M, YAN P, NAWAZ M A, LIU D. High Conversion to Aromatics via CO2-FT over a CO-Reduced Cu-Fe2O3 Catalyst Integrated with HZSM-5[J]. ACS Catal,2020,10(19):11268−11279. doi: 10.1021/acscatal.0c02722
    [13] WANG Y, TAN L, TAN M H, ZHANG P P, FANG Y, YONEYAMA Y, YANG G H, TSUBAKI N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2019,9(2):895−901. doi: 10.1021/acscatal.8b01344
    [14] ZHOU C, SHI J, ZHOU W, CHENG K, ZHANG Q, KANG J, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310.
    [15] GAO P, ZHANG L, LI S, ZHOU Z, SUN Y. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Cent Sci,2020,6(10):1657−1670. doi: 10.1021/acscentsci.0c00976
    [16] GAO P, LI S, BU X, DANG S, LIU Z, WANG H, ZHONG L, QIU M, YANG C, CAI J, WEI W, SUN Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [17] WEI J, YAO R, GE Q, XU D, FANG C, ZHANG J, XU H, SUN J. Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation[J]. Appl Catal B-Environ,2021,:283.
    [18] LIU Z, NI Y, SUN T, ZHU W, LIU Z. Conversion of CO2 and H2 into propane over InZrO and SSZ-13 composite catalyst[J]. J. Energy Chem,2021,54:111−117. doi: 10.1016/j.jechem.2020.04.069
    [19] XU Z, MA H, HUANG Y, QIAN W, ZHANG H, YING W. Synthesis of submicron SSZ-13 with tunable acidity by the seed-assisted method and its performance and coking behavior in the MTO reaction[J]. ACS Omega,2020,5(38):24574−24583. doi: 10.1021/acsomega.0c03075
    [20] YU H F, ZHANG G P, HAN LN, CHANG L P, BAO W R, WANG J C. Cu-SSZ-13 catalyst synthesized under microwave irradiation and its performance in catalytic removal of NOx from vehicle exhaust[J]. Acta Physico-Chimica Sinica,2015,31(11):2165−2173. doi: 10.3866/PKU.WHXB201509184
    [21] XU Z, LI J, HUANG Y, MA H, QIAN W, ZHANG H, YING W. Size control of SSZ-13 crystals with APAM and its influence on the coking behaviour during MTO reaction[J]. Catal Sci Technol,2019,9(11):2888−2897. doi: 10.1039/C9CY00412B
    [22] WU L, HENSEN E J M. Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction[J]. Catalysis Today,2014,235:160−168. doi: 10.1016/j.cattod.2014.02.057
    [23] DANG S S, GAO P, LIU Z Y, CHEN X Q, YANG C G, WANG H, ZHONG L S, LI S G, SUN Y H. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. J. Catal,2018,364:382−393. doi: 10.1016/j.jcat.2018.06.010
    [24] Jia X, Sun K, Wang J, Shen C, Liu C J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J. Energy Chem,2020,50:409−415. doi: 10.1016/j.jechem.2020.03.083
    [25] YU Z, HONG N W, RUO YU C. In situ synthesis of Cu-SSZ-13/cordierite monolithic catalyst for the selective catalytic reduction of NO with NH3[J]. Acta Physico-Chimica Sinica,2015,31(2):329−336. doi: 10.3866/PKU.WHXB201412082
    [26] LI Z, QU Y, WANG J, LIU H, LI M, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3(2):570−583. doi: 10.1016/j.joule.2018.10.027
    [27] YE J, LIU C, M EI, D, G E, Q. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study[J]. ACS Catal,2013,3(6):1296−1306. doi: 10.1021/cs400132a
    [28] MARTIN O, MARTIN A J, MONDELLI C, MITCHELL S, SEGAWA T F, HAUERT R, DROUILLY C, CURULLA-FERRE D, PEREZ-RAMIREZ J. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed Engl,2016,55(21):6261−6265. doi: 10.1002/anie.201600943
    [29] LI Y, Wang W T, ZHAO F, XU Y T. H - SSZ - 13 molecular sieve synthesized by introducing accelerant and its effect on reactivity of MTO[J]. Journal of Tianjin Polytechnic University,2015,34(6):35−40.
    [30] NUMPILAI T, WATTANAKIT C, CHAREONPANICH M, LIMTRAKUL J, WITOON T. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Convers Manage,2019,180:511−523. doi: 10.1016/j.enconman.2018.11.011
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-09

目录

    /

    返回文章
    返回