留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质煤焦油制备航空航天燃料的工艺研究

白哲 黄澎 王路瑶 曹宏伟 张香文 李国柱

白哲, 黄澎, 王路瑶, 曹宏伟, 张香文, 李国柱. 轻质煤焦油制备航空航天燃料的工艺研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60062-2
引用本文: 白哲, 黄澎, 王路瑶, 曹宏伟, 张香文, 李国柱. 轻质煤焦油制备航空航天燃料的工艺研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60062-2
BAI Zhe, HUANG Peng, WANG Lu-yao, CAO Hong-wei, ZHANG Xiang-wen, LI Guo-zhu. A Study on Upgrading Light Coal Tar to Aerospace Fuel[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60062-2
Citation: BAI Zhe, HUANG Peng, WANG Lu-yao, CAO Hong-wei, ZHANG Xiang-wen, LI Guo-zhu. A Study on Upgrading Light Coal Tar to Aerospace Fuel[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60062-2

轻质煤焦油制备航空航天燃料的工艺研究

doi: 10.1016/S1872-5813(21)60062-2
基金项目: 国家重点研发计划(2016YFB0600305)项目资助
详细信息
    作者简介:

    白哲:baizhe@tju.edu.cn

    通讯作者:

    Tel:022-27892340,E-mail:gzli@tju.edu.cn

  • 中图分类号: TQ522.64

A Study on Upgrading Light Coal Tar to Aerospace Fuel

Funds: The present work was supported by National Key Research and Development Project of China (2016YFB0600305)
  • 摘要: 本文以煤炭科学技术研究院有限公司提供的轻质煤焦油为原料,开展了提质改性制备航空航天燃料的工艺研究。针对煤焦油原料的特点,设计了一次脱硫-馏分切割-二次脱硫-加氢饱和的工艺路线。使用实验室自制的NiMoW/Al2O3加氢脱硫催化剂和Pd/Al2O3加氢饱和催化剂,通过系统实验获得了最佳工艺操作条件,其中加氢脱硫的最佳工艺条件为 300 ℃、5 MPa,加氢饱和的最佳工艺条件为 240 ℃、5 MPa。经处理,油品的硫含量由323 mg/kg下降至8.5 mg/kg。原料中的苯、萘等芳烃化合物经处理转化为环烷烃。最终产物油中主要组成为环烷烃与链烷烃,含量分别为58.38w%与29.65w%。所制备的产品油具有高热值,低硫含量和低不饱和烃的特点,具有作为航空航天燃料应用的潜力。
  • 图  1  NiMoW/Al2O3加氢脱硫催化剂的TEM图

    Figure  1.  TEM images of NiMoW/Al2O3

    图  2  煤焦油加氢工艺流程图

    Figure  2.  Process flow chart of coal tar hydrogenation

    图  3  Pd/Al2O3和Al2O3的XRD表征图

    Figure  3.  XRD patterns of Pd/Al2O3 and Al2O3

    图  4  原料油的全二维质谱图

    Figure  4.  GC × GC-MS chromatogram of the raw oil

    图  5  不同温度和压力下一次脱硫后的硫含量

    Figure  5.  Sulfur contents of the product oil under different temperature and pressure after primary HDS

    图  6  馏分切割后产物油全二维质谱图

    Figure  6.  GC × GC-MS chromatogram of the product oil after fraction cutting

    图  7  二次脱硫后产物油的全二维质谱图

    Figure  7.  GC × GC-MS chromatogram of the product oil after secondary HDS

    图  8  产品油中芳香烃含量随温度和压力的变化

    Figure  8.  Aromatic contents of the product oil under different temperature and pressure during hydrosaturation

    图  9  加氢饱和后产品油的全二维质谱图

    Figure  9.  GC × GC-MS chromatogram of the product oil after hydrogenation saturation

    表  1  原料油的性质

    Table  1.   Properties of the raw oil

    Density
    (15 ℃) g/cm3
    Density
    (20 ℃) g/cm3
    Viscosity
    (25 ℃) m2/s
    Heat of
    combustion
    MJ/kg
    0.88570.88204.3542.68
    下载: 导出CSV

    表  2  原料油的馏分沸程分析(℃)

    Table  2.   Distillation analysis of the raw oil (℃)

    IBP10%20%30%40%50%60%70%80%90%FBP
    7096137180215245273291307315327
    下载: 导出CSV

    表  3  原料油的元素分析

    Table  3.   Elements of the raw oil

    C(w%)H(w%)O(w%)N(w%)S(w%)
    85.7212.301.770.130.0323
    下载: 导出CSV

    表  4  原料油的成分组成

    Table  4.   Composition of raw oil

    ItemsContent (w%)
    Chain alkanes24.47
    Chain olefins5.44
    Cycloalkanes(Total: 12.44)Monocyclic alkanes8.15
    Bicyclic alkanes3.82
    Polycyclic alkanes0.47
    Aromatic hydrocarbons(Total: 52.12)Benzenes6.72
    Indenes2.23
    Naphthalenes14.19
    Biphenyls5.35
    Polycyclic aromatic hydrocarbons23.62
    Oxygen-containing compounds4.69
    Nitrogen-containing compounds0.84
    Total100.00
    下载: 导出CSV

    表  5  馏分切割后油品成分组成

    Table  5.   Composition of product oil after fraction cutting

    ItemsContent (w%)
    Chain alkanes17.85
    Chain olefin6.58
    Cycloalkanes(Total: 16.78)Monocyclic alkanes6.31
    Bicyclic alkanes9.68
    Polycyclic alkanes0.79
    Aromatic hydrocarbons(Total: 45.22)Benzenes10.93
    Indenes5.41
    Naphthalenes22.93
    Biphenyls1.48
    Polycyclic aromatic hydrocarbons4.47
    Oxygen-containing compounds10.18
    Nitrogen-containing compounds3.39
    Total100.00
    下载: 导出CSV

    表  6  二次脱硫后油品成分组成

    Table  6.   Composition of product oil after secondary HDS

    ItemsContent (w%)
    Chain alkanes17.94
    Chain olefin7.52
    Cycloalkanes(Total: 26.06)Monocyclic alkanes10.03
    Bicyclic alkanes14.55
    Polycyclic alkanes1.48
    Aromatic hydrocarbons(Total: 41.42)Benzenes9.62
    Indenes5.10
    Naphthalenes20.19
    Biphenyls1.75
    Polycyclic aromatic hydrocarbons4.76
    Oxygen-containing compounds5.72
    Nitrogen-containing compounds1.34
    Total100.00
    下载: 导出CSV

    表  7  加氢饱和后油品成分组成

    Table  7.   Composition of product oil after hydrogenation saturation

    ItemsContent (w%)
    Chain alkanes29.65
    Cycloalkanes(Total: 58.38)Monocyclic alkanes22.22
    Bicyclic alkanes28.76
    Polycyclic alkanes7.40
    Aromatic hydrocarbons(Total: 9.35)Benzenes2.23
    Indenes1.13
    Naphthalenes3.73
    Biphenyls0.25
    Polycyclic aromatic hydrocarbons2.02
    Oxygen-containing compounds2.17
    Nitrogen-containing compounds0.45
    Total100.00
    下载: 导出CSV

    表  8  加氢饱和产品油馏分烃类组成表

    Table  8.   The composition of product oil after hydrogenation saturation

    Fraction hydrocarbon compositionContent (w%)
    Chain alkanes28.7
    Monocyclic alkanes31.2
    Bicyclic alkanes30.4
    Tricyclic alkanes5.9
    Total cycloalkanes67.5
    Total saturated hydrocarbons96.2
    Alkylbenzene3.8
    Indan or Tetrahydroindene0
    Indenes0
    Total Monocyclic Aromatics3.8
    Naphthalene0
    Naphthalenes0
    Acenaphthene0
    Acenaphthylenes0
    Total bicyclic aromatic hydrocarbons0
    Tricyclic aromatic hydrocarbons0
    Total aromatics3.8
    Colloid0
    Total100.0
    下载: 导出CSV

    表  9  产品油性质测试结果

    Table  9.   Properties of product oil

    ItemsProductJP-900
    Density0.8187 g/cm30.87 g/cm3
    Heat of combustion46.397 MJ/kg42.8 MJ/kg
    Aromatic content3.8 w%1.9 v%
    Sulfur content0.00085%0%
    Flash point41 ℃61 ℃
    下载: 导出CSV
  • [1] 蒋丽华. 航煤加氢精制技术研究进展[J]. 广东化工,2020,47(8):94−5. doi: 10.3969/j.issn.1007-1865.2020.08.042

    Jiang Lihua. The research process in the hydrofining technology of jet fuel[J]. Guangdong Chem Ind,2020,47(8):94−5. doi: 10.3969/j.issn.1007-1865.2020.08.042
    [2] 任帅, 杨军, 郭生飞, 等. 煤焦油加氢制轻质油品技术进展[J]. 广州化工,2020,48(14):22−4. doi: 10.3969/j.issn.1001-9677.2020.14.009

    REN Shuai, YANG Jun, GUO Sheng-fei, et al. Technical progress of coal tar hydrogenation to light oil products[J]. Guangzhou Chem Ind,2020,48(14):22−4. doi: 10.3969/j.issn.1001-9677.2020.14.009
    [3] 沈东, 姚峻峰, 鲁晓峰, 等. 中低温煤焦油加氢技术进展及应用分析[J]. 煤化工,2020,48(02):48−52. doi: 10.3969/j.issn.1005-9598.2020.02.014

    SHEN Dong, YAO Jun-feng, LU Xiao-feng, et al. Progress and application analysis for hydrogenation technology of low and medium-temperature coal tar[J]. Coal Chem Ind,2020,48(02):48−52. doi: 10.3969/j.issn.1005-9598.2020.02.014
    [4] 永成. 煤焦油加氢制燃料油品[J]. 化工管理,2019,(29):194−5. doi: 10.3969/j.issn.1008-4800.2019.29.132

    YONG Cheng. Hydrogenation of coal tar to produce fuel[J]. Chem Ent Manage,2019,(29):194−5. doi: 10.3969/j.issn.1008-4800.2019.29.132
    [5] 周秋成, 席引尚, 马宝岐. 我国煤焦油加氢产业发展现状与展望[J]. 煤化工,2020,48(3):3−8+49. doi: 10.3969/j.issn.1005-9598.2020.03.002

    ZHOU Qiu-cheng, XI Yin-shang, MA Bao-qi. Development situation and trend of coal tar hydrogenation industry in China[J]. Coal Chem Ind,2020,48(3):3−8+49. doi: 10.3969/j.issn.1005-9598.2020.03.002
    [6] 张金峰, 沈寒晰, 吴素芳, 等. 煤焦油深加工现状和发展方向[J]. 煤化工,2020,48(4):76−81. doi: 10.3969/j.issn.1005-9598.2020.04.019

    ZHANG Jin-feng, SHEN Han-xi, WU Su-fang, et al. Present situation and development direction of coal tar deep processing[J]. Coal Chem Ind,2020,48(4):76−81. doi: 10.3969/j.issn.1005-9598.2020.04.019
    [7] 杨敬伟. 煤焦油加氢工艺反应性的研究[J]. 化工管理,2020,(23):122−3. doi: 10.3969/j.issn.1008-4800.2020.23.059

    YANG Jing-wei. Study on the reactivity of coal tar hydrogenation process[J]. Chem Ent Manage,2020,(23):122−3. doi: 10.3969/j.issn.1008-4800.2020.23.059
    [8] 冯雷庆. 延迟焦化工艺在煤焦油加工中的应用[J]. 化工设计通讯,2018,44(8):6. doi: 10.3969/j.issn.1003-6490.2018.08.006

    FENG Lei-qing. Application of delayed coking process in coal tar processing[J]. Chem Eng Des Commun,2018,44(8):6. doi: 10.3969/j.issn.1003-6490.2018.08.006
    [9] 孟宇, 朱仕元, 高平强. 低温煤焦油的综合利用[J]. 价值工程,2019,38(32):265−6.

    MENG Yu, ZHU Shi-yuan, GAO Ping-qiang. Comprehensive utilization of low temperature coal tar[J]. Value Eng,2019,38(32):265−6.
    [10] 王凤武. 煤焦油洗油组分提取及其在精细化工中的应用[J]. 煤化工,2004,(2):26−8. doi: 10.3969/j.issn.1005-9598.2004.02.007

    WANG Feng-wu. Extraction of washing oil distillate from tar and its application in fine chemical industry[J]. Coal Chem Ind,2004,(2):26−8. doi: 10.3969/j.issn.1005-9598.2004.02.007
    [11] 闫厚春, 范雯阳, 崔鹏, 等. 中低温煤焦油的加工利用现状[J]. 应用化工,2019,48(08):1904−7. doi: 10.3969/j.issn.1671-3206.2019.08.032

    YAN Hou-chun, FAN Wen-yang, CUI Peng, et al. Current status of processing and utilization of medium and low temperature coal tar[J]. Appl Chem Ind,2019,48(08):1904−7. doi: 10.3969/j.issn.1671-3206.2019.08.032
    [12] 张汉东. 煤焦油产品在精细化工中的应用[J]. 精细化工,1987,(1):55−8.

    ZHANG Han-dong. Application of coal tar products in fine chemical industry[J]. Fine Chem,1987,(1):55−8.
    [13] 屠约峰. 煤焦油加氢利用工艺和催化剂研究进展[J]. 石油化工应用,2018,37(3):6−10. doi: 10.3969/j.issn.1673-5285.2018.03.002

    TU Yue-feng. Research progress of technology and catalyst for hydrogenation of coal tar[J]. Petrochem Ind Appl,2018,37(3):6−10. doi: 10.3969/j.issn.1673-5285.2018.03.002
    [14] 崔文岗, 李冬, 樊安, 等. 低温煤焦油加氢制备清洁燃料油品中试试验研究[J]. 化工进展,2018,37(6):2192−202.

    CUI Wen-gang, LI Dong, FAN An, et al. Pilot-scale study of upgrading a low temperature coal tar distillate for the production of clean fuels[J]. Chem Ind Eng Prog,2018,37(6):2192−202.
    [15] 何剑洪, 张毅. 煤焦油加氢工艺技术[J]. 辽宁化工,2019,48(4):377−9. doi: 10.3969/j.issn.1004-0935.2019.04.028

    HE Jian-hong, ZHANG Yi. Discussion on the hydrogenation technology of coal tar[J]. Liaoning Chem Ind,2019,48(4):377−9. doi: 10.3969/j.issn.1004-0935.2019.04.028
    [16] 何彦兵, 甘伊楠. 中低温煤焦油加氢技术研究[J]. 化工管理,2017,(16):87. doi: 10.3969/j.issn.1008-4800.2017.16.059

    HE Yan-bing, GAN Yi-nan. Research on hydrogenation technology of medium and low temperature coal tar[J]. Chem Ent Manage.,2017,(16):87. doi: 10.3969/j.issn.1008-4800.2017.16.059
    [17] 韩伟, 杜宗罡, 杨军, 等. 中低温煤焦油制备火箭煤油研究[J]. 工业催化,2019,27(6):67−71. doi: 10.3969/j.issn.1008-1143.2019.06.011

    HAN Wei, DU Zong-gang, YANG Jun, et al. Study on preparation of rocket kerosene from mid-low-temperature coal tar[J]. Ind Catal,2019,27(6):67−71. doi: 10.3969/j.issn.1008-1143.2019.06.011
    [18] ROAN M A, BOEHMAN A L. The effect of fuel composition and dissolved oxygen on deposit formation from potential JP-900 basestocks[J]. Energ Fuel,2004,18(3):835−43. doi: 10.1021/ef034050b
    [19] BALSTER L M, CORPORAN E, DEWITT M J, et al. Development of an advanced, thermally stable, coal-based jet fuel[J]. Fuel Process Technol,2008,89(4):364−78. doi: 10.1016/j.fuproc.2007.11.018
    [20] YONG G, XU Z, XIONG L, et al. Hydroprocessing of low-temperature coal tar to produce jet fuel[J]. RSC Adv,2018,8(42):23663−70. doi: 10.1039/C8RA04531C
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  5
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-09

目录

    /

    返回文章
    返回