留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钾掺杂对Fe/GO催化合成气制α-烯烃的影响

李玉峰 杨鹏举 姜枫 刘冰 胥月兵 刘小浩

李玉峰, 杨鹏举, 姜枫, 刘冰, 胥月兵, 刘小浩. 钾掺杂对Fe/GO催化合成气制α-烯烃的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60063-4
引用本文: 李玉峰, 杨鹏举, 姜枫, 刘冰, 胥月兵, 刘小浩. 钾掺杂对Fe/GO催化合成气制α-烯烃的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60063-4
LI Yu-feng, YANG Peng-ju, JIANG Feng, LIU Bing, XU Yue-bing, LIU Xiao-hao. Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60063-4
Citation: LI Yu-feng, YANG Peng-ju, JIANG Feng, LIU Bing, XU Yue-bing, LIU Xiao-hao. Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60063-4

钾掺杂对Fe/GO催化合成气制α-烯烃的影响

doi: 10.1016/S1872-5813(21)60063-4
详细信息
    作者简介:

    李玉峰:1154369775@qq.com

    通讯作者:

    liuxh@jiangnan.edu.cn

Effect of potassium on GO-modified large Fe3O4 microspheres for the production of α-olefins

  • 摘要: 铁基催化剂在费托合成反应中对高附加值α-烯烃具有高选择性,然而,催化剂容易由于碳沉积而失活,并且高CO2选择性大幅降低了合成气的碳利用效率。为此,作者开发了一种简单有效的铁基催化剂制备方法来解决这一问题。具体地说,采用水热法制备了平均粒径~580 nm Fe3O4微球,并将其与GO在溶液中超声混合,离心、干燥后即得到Fe/GO催化剂。GO引入能使大的Fe3O4微球在反应过程中逐渐演变成小尺寸碳化铁纳米粒子(~9.1 nm),有效地抑制了催化剂的烧结和积碳。催化剂显示了优异的活性、稳定性和高α-烯烃选择性。表征结果表明,K加入到Fe3O4微球中,催化剂在演变过程中形成了更高的ε′-Fe2.2C含量(约为58.9%),有利于显著降低CO2选择性。
  • 图  1  催化剂的XRD谱图

    Figure  1.  XRD patterns of the various fresh catalysts.

    图  2  新鲜催化剂的N2吸脱附曲线(a)及相应的孔径分布(b)

    Figure  2.  N2 adsorption-desorption isotherms (a) and corresponding pore size distribution curves (b)

    图  3  新鲜催化剂的SEM图像

    Figure  3.  SEM images of the fresh catalysts

    图  4  新鲜催化剂拉曼光谱(a)和CO-TPD(b)

    Figure  4.  Raman spectra (a) and CO-TPD (b) of the fresh catalysts

    图  5  催化剂的H2-TPR曲线

    Figure  5.  H2-TPR profiles of catalysts

    图  6  新鲜和反应后催化剂的TEM图像。

    Figure  6.  TEM images of the fresh and spent catalysts

    图  7  反应后催化剂的XRD

    Figure  7.  XRD patterns of the spent catalysts.

    图  8  Fe3O4和Fe/GO的催化性能。反应条件:0.1 g催化剂,1 MPa, H2/CO/N2 = 48.5/48.5/3, GHSV = 22.2 L gcat−1 h−1, 340 ℃.

    Figure  8.  Catalytic performances of Fe3O4 and Fe/GO catalysts. Reaction conditions: 0.1 g of catalyst, 1 MPa, H2/CO/N2 = 48.5/48.5/3, GHSV = 22.2 L gcat−1 h−1, and 340 ℃.

    图  9  反应的碳数分布(催化剂和反应条件同图8

    Figure  9.  Carbon number distribution (catalysts and reaction conditions are same as shown in Fig. 8).

    图  10  H2/CO比对0.4KFe/GO催化FTS反应的影响。反应条件:0.1催化剂,1 MPa,, GHSV = 22.2 L gcat−1 h−1, 340 ℃.

    Figure  10.  Effects of the H2/CO ratio on FTS over 0.4KFe/GO catalyst. Reaction conditions: 0.1 g of catalyst, 1 MPa, GHSV = 22.2 L gcat−1 h−1, and 340 ℃.

    图  11  反应的碳数分布(催化剂和反应条件同图10

    Figure  11.  Carbon number distribution (catalysts and reaction conditions are same as shown in Fig. 10).

    表  1  新鲜催化剂的H2-TPR结果

    Table  1.   The H2-TPR results of the fresh catalysts.

    SampleTotal H2 consumption
    (mmol/gcat)
    Reduction
    degree (%)
    Fe3O421.984.1
    Fe/GO8.475.3
    0.4KFe/GO9.282.3
    0.8KFe/GO9.180.2
    下载: 导出CSV

    表  2  反应后催化剂的穆斯堡尔光谱

    Table  2.   Mössbauer spectra of the spent catalysts

    CatalystH(KOe)IS(mm s−1)QS(mm s−1)Г/2(mm s−1)Phase ascriptionArea (%)
    Fe3O42160.25−0.110.18χ-Fe5C2(Ⅰ)39.3
    1860.18−0.060.23χ-Fe5C2(Ⅱ)44.1
    1110.21−0.110.16χ-Fe5C2(Ⅲ)16.5
    Fe/GO0.501.070.68Fe(Ⅱ)/Fe(Ⅲ)16.1
    1690.38−0.110.15ε'-Fe2.2C44.8
    2190.40−0.060.20χ-Fe5C2(Ⅰ)15.0
    1820.380.060.22χ-Fe5C2(Ⅱ)19.8
    1030.11−0.070.12χ-Fe5C2(Ⅲ)4.3
    0.4KFe/GO0.371.120.50Fe(Ⅱ)/Fe(Ⅲ)21.7
    1660.25−0.100.16ε'-Fe2.2C58.9
    2160.31−0.050.21χ-Fe5C2(Ⅰ)9.5
    1790.300.090.18χ-Fe5C2(Ⅱ)9.9
    0.8KFe/GO0.371.140.48Fe(Ⅱ)/Fe(Ⅲ)23.1
    1670.24−0.110.16ε'-Fe2.2C53.4
    2150.29−0.060.19χ-Fe5C2(Ⅰ)11.4
    1820.280.120.21χ-Fe5C2(Ⅱ)12.1
    下载: 导出CSV

    表  3  不同催化剂的FTS反应结果。

    Table  3.   Catalytic performance of the FTS reactions over various catalysts.

    CatalystXCO (%)SCO2 (%)Hydrocarbon selectivity (%)C2-4=/C2-4 (%)C2+=/C2+ (%)C2+=/(C1+C2+) (%)
    CH4C2=-C4=C2o-C4oC5+
    Fe3O4a8.542.730.121.42.645.989.284.659.1
    Fe/GOa83.645.88.030.74.756.786.986.679.7
    0.4KFe/GOa77.038.34.618.51.975.090.687.683.5
    0.8KFe/GOa68.742.25.619.62.372.589.587.282.3
    0.4KFe/GOb83.535.67.724.33.065.189.187.380.5
    0.4KFe/GOc80.131.69.830.63.855.888.986.177.6
    a反应条件:100 mg催化剂,340 ℃, 1 MPa, H2/CO = 1, GHSV = 22.2 L gcat−1 h−1,50 h。b H2/CO = 2。c H2/CO =3。
    a Reaction conditions: 100 mg catalyst, 340 ℃, 1 MPa, H2/CO = 1, GHSV = 22.2 L gcat−1 h−1, 50 h. b H2/CO = 2.
    c H2/CO = 3.
    下载: 导出CSV
  • [1] CHHEDA J N, HUBER G W, DUMESIC J A. Katalytische flüssigphasenumwandlung oxygenierter kohlenwasserstoffe aus biomasse zu treibstoffen und rohstoffen für die chemiewirtschaft[J]. Angew Chem,2007,119:7298−7318. doi: 10.1002/ange.200604274
    [2] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37:2758−2781. doi: 10.1039/b805427d
    [3] FISCHER F, TROPSCH H. Die erdölsynthese bei gewöhnlichem druck aus den vergasungsprodukten der kohlen[J]. Brennst Chem,1926,7:97−104.
    [4] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107:1692−1744. doi: 10.1021/cr050972v
    [5] ZHANG Q, KANG J, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity[J]. ChemCatChem,2010,2:1030−1058. doi: 10.1002/cctc.201000071
    [6] PUGA A V. On the nature of active phases and sites in CO and CO2 hydrogenation catalysts[J]. Catal Sci Technol,2018,8:5681−5707. doi: 10.1039/C8CY01216D
    [7] PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: Diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles[J]. Angew Chem Int Ed,2015,54:4553−4556. doi: 10.1002/anie.201411708
    [8] GENG S, JIANG F, XU Y, LIU X. Iron‐based Fischer-Tropsch synthesis for the efficient conversion of carbon dioxide into Isoparaffins[J]. ChemCatChem,2016,8:1303−1307. doi: 10.1002/cctc.201600058
    [9] YANG C, ZHAO B, GAO R, YAO S, ZHAI P, LI S, YU J, HOU Y, MA D. Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer-Tropsch synthesis catalyst[J]. ACS Catal,2017,7:5661−5667. doi: 10.1021/acscatal.7b01142
    [10] ZHENG J, CAI J, JIANG F, XU Y, LIU X. Investigation of the highly tunable selectivity to linear α-olefins in Fischer-Tropsch synthesis over silica-supported Co and CoMn catalysts by carburization-reduction pretreatment[J]. Catal Sci Technol,2017,7:4736−4755. doi: 10.1039/C7CY01764B
    [11] CHENG Q, TIAN Y, LYU S, ZHAO N, MA K, DING T, JIANG Z, WANG L, ZHANG J, ZHENG L. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J]. Nat Commun,2018,9:1−9. doi: 10.1038/s41467-017-02088-w
    [12] LI J, HE Y, TAN L, ZHANG P, PENG X, ORUGANTI A, YANG G, ABE H, WANG Y, TSUBAKI N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology[J]. Nat Catal,2018,1:787−793. doi: 10.1038/s41929-018-0144-z
    [13] JIANG F, LIU B, GENG S, XU Y, LIU X. Hydrogenation of CO2 into hydrocarbons: enhanced catalytic activity over Fe-based Fischer–Tropsch catalysts[J]. Catal Sci Technol,2018,8:4097−4107. doi: 10.1039/C8CY00850G
    [14] LIU B, LI W, XU Y, LIN Q, JIANG F, LIU X. Insight into the Intrinsic Active Site for Selective Production of Light Olefins in Cobalt-Catalyzed Fischer–Tropsch Synthesis[J]. ACS Catal,2019,9:7073−7089. doi: 10.1021/acscatal.9b00352
    [15] WANG T, XU Y, SHI C, JIANG F, LIU B, LIU X. Direct production of aromatics from syngas over a hybrid FeMn Fischer–Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity[J]. Catal Sci Technol,2019,9:3933−3946. doi: 10.1039/C9CY00750D
    [16] LIU X, LINGHU W, LI X, ASAMI K, FUJIMOTO K. Effects of solvent on Fischer–Tropsch synthesis[J]. Appl Catal A Gen,2006,303:251−257. doi: 10.1016/j.apcata.2006.02.009
    [17] GALVIS H M T, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335:835−838. doi: 10.1126/science.1215614
    [18] LU J, YANG L, XU B, WU Q, ZHANG D, YUAN S, ZHAI Y, WANG X, FAN Y, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins[J]. ACS Catal,2014,4:613−621. doi: 10.1021/cs400931z
    [19] CHENG Y, LIN J, XU K, WANG H, YAO X, PEI Y, YAN S, QIAO M, ZONG B. Fischer–Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catal,2016,6:389−399. doi: 10.1021/acscatal.5b02024
    [20] ZHAI P, XU C, GAO R, LIU X, LI M, LI W, FU X, JIA C, XIE J, ZHAO M. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium‐modulated Fe5C2 catalyst[J]. Angew Chem Int Ed,2016,128:10056−10061. doi: 10.1002/ange.201603556
    [21] CHENG Y, LIN J, WU T, WANG H, XIE S, PEI Y, YAN S, QIAO M, ZONG B. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Appl Catal B Environ,2017,204:475−485. doi: 10.1016/j.apcatb.2016.11.058
    [22] LIU B, GENG S, ZHENG J, JIA X, JIANG F, LIU X. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4‐Based catalysts for enhanced selectivity to light α‐olefins[J]. ChemCatChem,2018,10:4718−4732. doi: 10.1002/cctc.201800782
    [23] CAI J, JIANG F, LIU X. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process[J]. Appl Catal B Environ,2017,210:1−13. doi: 10.1016/j.apcatb.2017.03.036
    [24] JIANG F, ZHANG M, LIU B, XU Y, LIU X. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer–Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation[J]. Catal Sci Technol,2017,7:1245−1265. doi: 10.1039/C7CY00048K
    [25] ZHANG X, LIN Q, LIU B, ZHENG J, JIANG F, XU Y, LIU X. Unravelling the structure-performance relationship over iron-based Fischer-Tropsch synthesis by depositing the iron carbonyl in syngas on SiO2 in a fixed-bed reactor[J]. Appl Catal A Gen,2019,572:197−209. doi: 10.1016/j.apcata.2019.01.001
    [26] LYU S, LIU C, WANG G, ZHANG Y, LI J, WANG L. Structural evolution of carbon in an Fe@C catalyst during the Fischer–Tropsch synthesis reaction[J]. Catal Sci Technol,2019,9:1013−1020. doi: 10.1039/C8CY02420K
    [27] PHIENLUPHON R, AI P, GAO X, YONEYAMA Y, REUBROYCHAROEN P, VITIDSANT T, TSUBAKI N. Direct fabrication of catalytically active FexC sites by sol–gel autocombustion for preparing Fischer–Tropsch synthesis catalysts without reduction[J]. Catal Sci Technol,2016,6:7597−7603. doi: 10.1039/C6CY01383J
    [28] OAR-ARTETA L, VALERO-ROMERO M J, WEZENDONK T, KAPTEIJN F, GASCON J. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis[J]. Catal Sci Technol,2018,8:210−220. doi: 10.1039/C7CY01753G
    [29] CHEN W, FAN Z, PAN X, BAO X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst[J]. J Am Chem Soc,2008,130:9414−9419. doi: 10.1021/ja8008192
    [30] 韩小雪, 陈妍希, 赵俏, 陈佳佳, 黄守莹, 吕静, 马新宾. 碳限域铁基费托合成催化剂研究进展[J/OL]. 化工进展: 1-16[2021-02-20]. https://doi.org/10.16085/j.issn.1000-6613.2020-2085.

    HAN X, CHEN Y, ZHAO Q, CHEN J, HUANG S, LÜ J, MA X. Advances in carbon-confined iron-based catalysts for Fischer‒Tropsch synthesis. [J/OL]. Chem Ind Eng Prog, 2021. DOI: 10.16085/j.issn.1000-6613.2020-2085.
    [31] DIKIN D A, STANKOVICH S, ZIMNEY E J, PINER R D, DOMMETT G H B, EVMENENKO G, NGUYEN S T, RUOFF R S. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448:457−460. doi: 10.1038/nature06016
    [32] WEI Y, LUO D, ZHANG C, LIU J, HE Y, YANG Y, LI Y. Precursor controlled synthesis of graphene oxide supported iron catalysts for Fischer–Tropsch synthesis[J]. Catal Sci Technol,2018,8:2883−2893. doi: 10.1039/C8CY00617B
    [33] JIANG F, LIU B, LI W, ZHANG M, LI Z, LIU X. Two-dimensional graphene-directed formation of cylindrical iron carbide nanocapsules for Fischer–Tropsch synthesis[J]. Catal Sci Technol,2017,7:4609−4621. doi: 10.1039/C7CY01172E
    [34] XIE J, YANG J, DUGULAN A I, HOLMEN A, CHEN D, DE JONG K P, LOUWERSE M J. Size and promoter effects in supported iron Fischer–Tropsch catalysts: Insights from experiment and theory[J]. ACS Catal,2016,6:3147−3157. doi: 10.1021/acscatal.6b00131
    [35] LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal,2015,5:3905−3909. doi: 10.1021/acscatal.5b00492
    [36] YANG P, JIANG F, LIU B, XU Y, LIU X. Structural evolution of large Fe3O4 microspheres on graphene oxide for efficient conversion of syngas into α-olefins[J]. New J Chem,2020,44:4987−4991. doi: 10.1039/D0NJ00201A
    [37] HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc,1958,80:1339−1339. doi: 10.1021/ja01539a017
    [38] MU J, CHEN B, GUO Z, ZHANG M, ZHANG Z, ZHANG P, SHAO C, LIU Y. Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials[J]. Nanoscale,2011,3:5034−5040. doi: 10.1039/c1nr10972c
    [39] ZHANG S, SHAO Y, LIAO H, ENGELHARD M H, YIN G, LIN Y. Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets[J]. ACS Nano,2011,5:1785−1791. doi: 10.1021/nn102467s
    [40] MOUSSA S O, PANCHAKARLA L S, HO M Q, EL-SHALL M S. Graphene-supported, iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: The role of the graphene support in comparison with carbon nanotubes[J]. ACS Catal,2014,4:535−545. doi: 10.1021/cs4010198
    [41] ZHANG W, ZHANG Y, TIAN Y, YANG Z, XIAO Q, GUO X, JING L, ZHAO Y, YAN Y, FENG J, SUN K. Insight into the capacitive properties of reduced graphene oxide[J]. ACS Appl Mater Inter,2014,6:2248−2254. doi: 10.1021/am4057562
    [42] WEI Y, ZHANG C, LIU X, WANG Y, CHANG Q, QING M, WEN X, YANG Y, LI Y. Enhanced Fischer–Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment[J]. Catal Sci Technol,2018,8:1113−1125. doi: 10.1039/C7CY02449E
    [43] ZHANG Z, ZHANG J, WANG X, SI R, XU J, HAN Y-F. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer-Tropsch to olefins[J]. J Catal,2018,365:71−85. doi: 10.1016/j.jcat.2018.05.021
    [44] WU T, LIN J, CHENG Y, TIAN J, WANG S, XIE S, PEI Y, YAN S, QIAO M, XU H, ZONG B. Porous graphene-confined Fe–K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Appl Mater Inter,2018,10:23439−23443. doi: 10.1021/acsami.8b05411
    [45] ABBASLOU R M M, TAVASSOLI A, SOLTAN J, DALAI A K. Iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis: Effect of catalytic site position[J]. Appl Catal A Gen,2009,367:47−52. doi: 10.1016/j.apcata.2009.07.025
    [46] XU Y, SHI C, LIU B, WANG T, ZHENG J, LI W, LIU D, LIU X. Selective production of aromatics from CO2[J]. Catal Sci Technol,2019,9:593−610. doi: 10.1039/C8CY02024H
    [47] DE SMIT E, CINQUINI F, BEALE A M, SAFONOVA O V, VAN BEEK W, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ϵ−χ−θ iron carbide catalyst phases in Fischer−Tropsch synthesis: Controlling μc[J]. J Am Chem Soc,2010,132:14928−14941. doi: 10.1021/ja105853q
    [48] CHANG Q, ZHANG C, LIU C, WEI Y, CHERUVATHUR A V, DUGULAN A I, NIEMANTSVERDRIET J W, LIU X, HE Y, QING M, ZHENG L, YUN Y, YANG Y, LI Y. Relationship betweeniron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer–Tropsch catalysts[J]. ACS Catal,2018,8:3304−3316. doi: 10.1021/acscatal.7b04085
    [49] WANG P, CHEN W, CHIANG F-K, DUGULAN A I, SONG Y, PESTMAN R, ZHANG K, YAO J, FENG B, MIAO P, XU W, HENSEN E J M. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Sci Adv,2018,4:eaau2947. doi: 10.1126/sciadv.aau2947
    [50] WEZENDONK T A, SUN X, DUGULAN A I, VAN HOOF A J F, HENSEN E J M, KAPTEIJN F, GASCON J. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis[J]. J Catal,2018,362:106−117. doi: 10.1016/j.jcat.2018.03.034
    [51] XU K, SUN B, LIN J, WEN W, PEI Y, YAN S, QIAO M, ZHANG X, ZONG B. ε-Iron carbide as a low-temperature Fischer–Tropsch synthesis catalyst[J]. Nat Commun,2014,5:5783. doi: 10.1038/ncomms6783
    [52] BUKUR D B, OKABE K, ROSYNEK M P, LI C P, WANG D J, RAO K R P M, HUFFMAN G P. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: I. Characterization studies[J]. J Catal,1995,155:353−365. doi: 10.1006/jcat.1995.1217
    [53] NIEMANTSVERDRIET J W, VAN DER KRAAN A M, VAN DIJK W L, VAN DER BAAN H S. Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction kinetic measurements[J]. J Phys Chem,1980,84:3363−3370. doi: 10.1021/j100462a011
    [54] LI J, CHENG X, ZHANG C, YANG Y, LI Y. Effects of alkali on iron-based catalysts for Fischer-Tropsch synthesis: CO chemisorptions study[J]. J Mol Catal A Chem,2015,396:174−180. doi: 10.1016/j.molcata.2014.10.006
    [55] NIU L, LIU X, LIU J, LIU X, WEN X, YANG Y, XU J, LI Y. Tuning carburization behaviors of metallic iron catalysts with potassium promoter and CO/syngas/C2H4/C2H2 gases[J]. J Catal,2019,371:333−345. doi: 10.1016/j.jcat.2019.02.013
    [56] CHENG K, VIRGINIE M, ORDOMSKY V V, CORDIER C, CHERNAVSKII P A, IVANTSOV M I, PAUL S, WANG Y, KHODAKOV A Y. Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts[J]. J Catal,2015,328:139−150. doi: 10.1016/j.jcat.2014.12.007
    [57] CASAVOLA M, HERMANNSDöRFER J, DE JONGE N, DUGULAN A I, DE JONG K P. Fabrication of Fischer–Tropsch catalysts by deposition of iron nanocrystals on carbon nanotubes[J]. Adv Funct Mater,2015,25:5309−5319. doi: 10.1002/adfm.201501882
    [58] SANTOS V P, WEZENDONK T A, JAéN J J D, DUGULAN A I, NASALEVICH M A, ISLAM H-U, CHOJECKI A, SARTIPI S, SUN X, HAKEEM A A, KOEKEN A C J, RUITENBEEK M, DAVIDIAN T, MEIMA G R, SANKAR G, KAPTEIJN F, MAKKEE M, GASCON J. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nat Commun,2015,6:6451. doi: 10.1038/ncomms7451
    [59] DUAN X, WANG D, QIAN G, WALMSLEY J C, HOLMEN A, CHEN D, ZHOU X. Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins[J]. J Energy Chem,2016,25:311−317. doi: 10.1016/j.jechem.2016.01.003
    [60] OJEDA M, NABAR R, NILEKAR A U, ISHIKAWA A, MAVRIKAKIS M, IGLESIA E. CO activation pathways and the mechanism of Fischer–Tropsch synthesis[J]. J Catal,2010,272:287−297. doi: 10.1016/j.jcat.2010.04.012
    [61] LIU B, LI W, ZHENG J, LIN Q, ZHANG X, ZHANG J, JIANG F, XU Y, LIU X. CO2 formation mechanism in Fischer–Tropsch synthesis over iron-based catalysts: a combined experimental and theoretical study[J]. Catal Sci Technol,2018,8:5288−5301. doi: 10.1039/C8CY01621F
    [62] LIN Q, LIU B, JIANG F, FANG X, XU Y, LIU X. Assessing the formation of cobalt carbide and its catalytic performance under realistic reaction conditions and tuning product selectivity in a cobalt-based FTS reaction[J]. Catal Sci Technol,2019,9:3238−3258. doi: 10.1039/C9CY00328B
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-18

目录

    /

    返回文章
    返回