留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型低阶煤热解过程中镉元素的释放规律

周玲妹 王晓兵 马晨 刘爽 马茂林 刘姣姣

周玲妹, 王晓兵, 马晨, 刘爽, 马茂林, 刘姣姣. 典型低阶煤热解过程中镉元素的释放规律[J]. 燃料化学学报(中英文), 2021, 49(5): 648-655. doi: 10.1016/S1872-5813(21)60066-X
引用本文: 周玲妹, 王晓兵, 马晨, 刘爽, 马茂林, 刘姣姣. 典型低阶煤热解过程中镉元素的释放规律[J]. 燃料化学学报(中英文), 2021, 49(5): 648-655. doi: 10.1016/S1872-5813(21)60066-X
ZHOU Ling-mei, WANG Xiao-bing, MA Chen, LIU Shuang, MA Mao-lin, LIU Jiao-jiao. Volatility of cadmium during pyrolysis of typical low rank coals[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 648-655. doi: 10.1016/S1872-5813(21)60066-X
Citation: ZHOU Ling-mei, WANG Xiao-bing, MA Chen, LIU Shuang, MA Mao-lin, LIU Jiao-jiao. Volatility of cadmium during pyrolysis of typical low rank coals[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 648-655. doi: 10.1016/S1872-5813(21)60066-X

典型低阶煤热解过程中镉元素的释放规律

doi: 10.1016/S1872-5813(21)60066-X
基金项目: 国家重点研究发展计划(2016YFB0600304),国家自然科学基金青年基金(51804313),中央高校基本科研业务费专项资金(2020YQHH08)和中国矿业大学(北京)越崎青年学者资助计划(2020QN10)资助
详细信息
    通讯作者:

    Tel:010-62339616,E-mail:lingmeizhou@hotmail.com

  • 中图分类号: TQ536

Volatility of cadmium during pyrolysis of typical low rank coals

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600304), the National Natural Science Foundation of China (51804313), the Fundamental Research Funds for the Central Universities (2020YQHH08) and Yue Qi Young Scholar Project, China University of Mining & Technology, Beijing (2020QN10).
  • 摘要: 将新疆淖毛湖煤(NMH)和内蒙高硫煤(GL)逐级化学提取,考察镉(Cd)在原煤中的赋存形态分布;分别在400−800 ℃、卧式/立式管式炉对原煤热解,考察赋存形态、热解终温、升温速率和停留时间对Cd释放规律的影响;利用FactSage软件模拟在理想条件下Cd的迁移和转化。结果表明,NMH和GL中Cd的赋存形态分布分别为有机质结合态(46%与37%)、碳酸盐结合态(32%与24%)、二硫化物结合态(12%与1%)、铝硅酸盐结合态(10%与38%)。Cd的赋存形态分布严重影响其挥发行为,有机质结合态易在低温区挥发,而碳酸盐、铝硅酸盐和硫化物结合态需在中高温区挥发;降低热解速率与延长停留时间有助于Cd的释放。FactSage模拟表明,NMH和GL中Cd的气态产物主要有Cd、CdO、Cd(OH)x和CdS,Cd在两种煤中挥发行为的差异主要是由热解温度、赋存形态分布以及煤阶决定,模拟与实验结果吻合较好。
  • FIG. 656.  FIG. 656.

    FIG. 656.  FIG. 656.

    图  1  原煤的XRD谱图

    Figure  1  XRD patterns of raw coal (Q-quartz (SiO2); K-kaolinite (Al4(Si4O10)(OH)8); P-pyrite (FeS2); S-Gypsum (CaSO4); C-calcite (CaCO3)

    图  2  (a)卧式管式炉和(b)立式管式炉示意图

    Figure  2  Schematic diagram of (a) horizontal tubular furnace and (b) vertical tubular furnace

    图  3  NMH和GL中矿物(a)和Cd(b)提取率

    Figure  3  Extraction rate of minerals (a) and Cd (b) in NMH and GL coal

    图  4  NMH和GL原煤TG(a)和DTG(b)曲线

    Figure  4  TG (a) and DTG (b) analyses of NMH and GL coal

    图  5  NMH和GL中Cd的挥发率(a)和反应速率(b)

    Figure  5  Volatility (a) and reaction rate (b) of Cd in NMH and GL coal

    图  6  快慢速热解时NMH中Cd的释放率

    Figure  6  Volatility in Cd of NMH in mild and fast pyrolysis

    图  7  快速热解Cd在不同停留时间时的释放率(a)和反应速率(b)

    Figure  7  Volatility (a) and reaction rate (b) of Cd with holding time of 10, 30 and 60 min during fast pyrolysis

    图  8  FactSage热力学模拟计算

    Figure  8  FactSage thermochemical calculation

    表  1  原煤基本性质

    Table  1  Basic properties of NMH and GL raw coal

    SampleNMHGL
    Proximate analysis w/%
    Mad9.1610.13
    Ad9.9512.13
    Vdaf52.7638.49
    FCdaf47.2461.51
    Ultimate analysis w/%
    Cdaf77.4176.72
    Hdaf6.605.07
    Odaf (calculated by difference)13.2215.84
    Ndaf2.160.81
    St,d0.551.77
    Ash composition wd/%
    SiO239.3532.57
    Al2O316.6414.03
    Fe2O35.8810.11
    CaO23.3017.00
    Na2O2.950.57
    MgO1.236.43
    K2O0.380.42
    SO38.8317.84
    Concentration of Cd/(μg·g−1)0.0480.043
    下载: 导出CSV

    表  2  逐级化学提取步骤

    Table  2  Sequential chemical extraction procedure

    StepReagentExtraction time/hTemperature/℃Extraction mode
    15 mol/L HCl660bound to carbonate
    240% HF660bound to aluminosilicate
    35 mol/L HNO3645bound to disulfide
    430% H2O2685bound to organic mater
    下载: 导出CSV

    表  3  计算时输入的参数

    Table  3  Parameters for calculation

    Major elementMass/gAsh componentMass/gTrace elementMass/g
    NMH
    C633.2CaO34Cd$ 4.8\; \times \;10^{-5} $
    H54Na2O3
    O108.1SiO229.7
    N17.7Fe2O39.9
    S5Al2O313
    MgO1.2
    GL
    C767.2CaO20.6Cd$ 4.3\; \times\;10^{-5} $
    H50.7Na2O0.7
    O158.4SiO239.5
    N8.1Fe2O312.3
    S17.7Al2O317
    MgO7.8
    下载: 导出CSV
  • [1] 徐彦辉. 准东煤热解过程中无机钠的转化及对热解产物的影响[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    XU Yan-jun. The transformation of inorganic sodium and it's effect on the products during the pyrolysis of Zhundong coal[D]. Harbin: Harbin Institute of Technology, 2015.
    [2] 党钾涛, 解强. 煤中有害微量元素及其在加工转化中的行为研究进展[J]. 现代化工,2016,36(7):59−63.

    DANG Jia-tao, XIE Qiang. Hazardous trace elements in coal and their bahaviors during processing and utilization[J]. Mod Chem Ind,2016,36(7):59−63.
    [3] ZHOU L, ZHANG G, REINMÖLLER M, MEYER B. Effect of inherent mineral matter on the co-pyrolysis of highly reactive brown coal and wheat straw[J]. Fuel,2019,239:1194−1203. doi: 10.1016/j.fuel.2018.11.114
    [4] 陈高琪, 张铭, 纪律, 马军. 青海低变质煤低温干馏试验研究[J]. 化学工程与技术,2012,2(4):122−125.

    CHEN Gao-qi, ZHANG Ming, JI Lv, MA Jun. The research for low temperature carbonization of low metamorphic coal in Qinghai[J]. Hans J Chem Eng Technol,2012,2(4):122−125.
    [5] 梁鹏, 曲旋, 毕继诚. 炉前煤低温干馏的工艺研究[J]. 燃料化学学报,2008,36(4):401−405.

    LIANG Peng, QU Xuan, BI Ji-cheng. Study on the low temperature coal pyrolysis by solid heat carrier in a moving bed pyrolyzer[J]. J Fuel Chem Technol,2008,36(4):401−405.
    [6] 胡浩权. 煤直接转化制高品质液体燃料和化学品[J]. 化工进展,2016,35(12):4096−4098.

    HU Hao-quan. Coal direct conversion to high quality liquid fuels and chemicals[J]. Chem Ind Eng Prog,2016,35(12):4096−4098.
    [7] PENG H, WANG B, YANG F, CHEN F. Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment[J]. J Fuel Chem Technol,2020,48(11):1402−1408. doi: 10.1016/S1872-5813(20)30090-6
    [8] SONG Q, ZHAO H, JIA J, YANG L, LV W, BAO J, SHU X, GU Q, ZHANG P. Pyrolysis of municipal solid waste with iron-based additives: A study on the kinetic, product distribution and catalytic mechanisms[J]. J Clean Prod,2020,258:120682. doi: 10.1016/j.jclepro.2020.120682
    [9] ZHOU L, GUO H, WANG X, CHU M, ZHANG G, ZHANG L. Effect of occurrence mode of heavy metal elements in a low rank coal on volatility during pyrolysis[J]. Int J Coal Sci Technol,2019,6(2):235−246. doi: 10.1007/s40789-019-0251-8
    [10] ZAJUSZ-ZUBEK E, KONIECZYŃSKI J. Dynamics of trace elements release in a coal pyrolysis process☆[J]. Fuel,2003,82(10):1281−1290. doi: 10.1016/S0016-2361(03)00031-0
    [11] GUO R, YANG J, LIU Z. Behavior of trace elements during pyrolysis of coal in a simulated drop-tube reactor[J]. Fuel,2004,83(6):639−643. doi: 10.1016/j.fuel.2003.08.021
    [12] WEI X, ZHANG G, CAI Y, LI L, LI H. The volatilization of trace elements during oxidative pyrolysis of a coal from an endemic arsenosis area in southwest Guizhou, China[J]. J Anal Appl Pyrolysis,2012,98(98):184−193.
    [13] GUO R, YANG J, LIU D, LIU Z. Transformation behavior of trace elements during coal pyrolysis[J]. Fuel Process Technol,2002,77(25):137−143.
    [14] SCACCIA S, MECOZZI R. Trace Cd, Co, and Pb elements distribution during Sulcis coal pyrolysis: GFAAS determination with slurry sampling technique[J]. Microchem J,2012,100:48−54.
    [15] 周玲妹, 郭豪, 初茉, 畅志兵, 王晓兵, 张冠军, 龚永强, 曲洋. 低阶煤中镉的赋存对其在热解中释放的影响[J]. 煤炭学报,2019,44(1):323−331.

    ZHOU Ling-mei, GUO Hao, CHU Mo, CHANG Zhi-bing, WANG Xiao-bing, ZHANG Guan-jun, GONG Yong-qiang, QU Yang. Effects of occurrence mode of Cd in low rank coal on its volatility during pyrolysis process[J]. J China Coal Soc,2019,44(1):323−331.
    [16] 魏晓飞. 黔西南高砷煤燃烧过程中有害元素释放规律的研究[D]. 北京: 中国科学院大学, 2012.

    WEI Xiao-fei. The characteristics of hazardous element release during combustion of the high arsenic coal from southwestern Guizhou, China[D]. Beijing: University of Chinese Academy of Sciences, 2012.
    [17] CHEN C, LUO Z, YU C. Release and transformation mechanisms of trace elements during biomass combustion[J]. J Hazard Mater,2019,380:120857. doi: 10.1016/j.jhazmat.2019.120857
    [18] 刘瑞卿. 煤转化过程中砷、硒、铅的热稳定性及转化行为研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2009.

    LIU Rui-qing. Study on thermal stability and transformation behavior of As, Se and Pb during coal conversion[D]. Taiyuan: Shanxi Institute of coal chemistry, Chinese Academy of Sciences, 2009.
    [19] 陈萍, 旷红伟, 唐修义. 煤中砷的分布和赋存规律研究[J]. 煤炭学报,2002,(3):259−263.

    CHEN Ping, KUANG Hong-wei, TANG Xiu-yi. Distribution and occurrence modes of arsenic in coal[J]. J China Coal Soc,2002,(3):259−263.
    [20] 郭欣, 郑楚光, 刘迎晖, 刘晶, 陆晓华. 煤中汞, 砷, 硒赋存形态的研究[J]. 工程热物理学报,2001,(6):763−766.

    GUO Xin, ZHENG Chu-guang, LIU Ying-hui, LIU Jing, LU Xiao-hua. The study on the modes of occurrence of mercury, arsenic and selenium in coal[J]. J Eng Therm,2001,(6):763−766.
    [21] SDAI S, WANG P, WARD C R, TANG Y, SONG X, JIANG J, HOWER J C, LI T, SEREDIN V V, WAGNER N J, JIANG Y, WANG X, LIU J. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions[J]. Int J Coal Geol,2015,152:19−46. doi: 10.1016/j.coal.2014.11.006
    [22] LIU J, YANG Z, YAN X, JI D, YANG Y, HU L. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals[J]. Fuel,2015,156(4):190−197.
    [23] 赵晶, 关腾, 李姣龙, 王金喜. 平朔矿区9~#煤中镉、铬和铊的含量分布及赋存状态[J]. 河北工程大学学报(自然科学版),2011,28(4):56−59.

    ZHAO Jing, GUANG Teng, LI Jiao-long, WANG Jin-xi. The distribution and occurrence state of Cd, Cr, and Tl of 9# coal in Pingshuo mine area[J]. J Heibei Univ Eng: Nat Sci Ed,2011,28(4):56−59.
    [24] GUO R, YANG J, LIU D, LIU Z. The fate of As, Pb, Cd, Cr and Mn in a coal during pyrolysis[J]. J Anal Appl Pyrolysis,2003,70(2):555−562. doi: 10.1016/S0165-2370(03)00025-1
    [25] 于敦喜, 徐明厚, 姚洪, 刘小伟, 周科. 煤燃烧中无机矿物向颗粒物的转化规律[J]. 工程热物理学报,2008,(3):507−510.

    YU Xi-dun, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHOU Ke. Transformation of inorganic minerals to particulate matter in coal combustion[J]. J Eng Therm,2008,(3):507−510.
    [26] ZHANG G J. Mineral matter behavior during co-gasification of coal and biomass[D]. Freiberg: Technische Universität Bergakademie Freiberg, 2014.
    [27] DANG J, XIE Q, LIANG D, WANG X, HE D, CAO J. The fate of trace elements in yanshan coal during fast pyrolysis[J]. Minerals, 2016, 6(2): 35.
    [28] MENG D, WANG T, XU J, CHEN X. A numerical study on the pyrolysis of large coal particles: Heat transfer and volatile evolution[J]. Fuel,2019,254:115668. doi: 10.1016/j.fuel.2019.115668
    [29] 郭瑞霞. 煤热解过程中若干微量有害元素转化行为的研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2003.

    GUO Rui-xia. Study on behavior of several trace elements during pyrolysis of coals[D]. Taiyuan: Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, 2003.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  392
  • HTML全文浏览量:  215
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2021-02-03
  • 网络出版日期:  2021-03-11
  • 刊出日期:  2021-05-15

目录

    /

    返回文章
    返回