留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重质有机资源热解过程中自由基诱导反应的密度泛函理论研究

毕山松 郭啸晋 王波 徐祥 赵丽凤 刘清雅

毕山松, 郭啸晋, 王波, 徐祥, 赵丽凤, 刘清雅. 重质有机资源热解过程中自由基诱导反应的密度泛函理论研究[J]. 燃料化学学报(中英文), 2021, 49(5): 684-693. doi: 10.1016/S1872-5813(21)60067-1
引用本文: 毕山松, 郭啸晋, 王波, 徐祥, 赵丽凤, 刘清雅. 重质有机资源热解过程中自由基诱导反应的密度泛函理论研究[J]. 燃料化学学报(中英文), 2021, 49(5): 684-693. doi: 10.1016/S1872-5813(21)60067-1
BI Shan-song, GUO Xiao-jin, WANG Bo, XU Xiang, ZHAO Li-feng, LIU Qing-ya. A DFT simulation on induction reactions involved radicals during pyrolysis of heavy organics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 684-693. doi: 10.1016/S1872-5813(21)60067-1
Citation: BI Shan-song, GUO Xiao-jin, WANG Bo, XU Xiang, ZHAO Li-feng, LIU Qing-ya. A DFT simulation on induction reactions involved radicals during pyrolysis of heavy organics[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 684-693. doi: 10.1016/S1872-5813(21)60067-1

重质有机资源热解过程中自由基诱导反应的密度泛函理论研究

doi: 10.1016/S1872-5813(21)60067-1
基金项目: 国家重点研发计划(2016YFB0600302)资助
详细信息
    作者简介:

    毕山松:bishansong@iet.cn

    通讯作者:

    Tel:+86-135-8165-0241,E-mail:guoxiaojin@iet.cn

  • 中图分类号: TQ511

A DFT simulation on induction reactions involved radicals during pyrolysis of heavy organics

Funds: The project was supported by the National Key R & D Program of China (2016YFB0600302)
  • 摘要: 以重质有机资源热解过程中的自由基反应为背景,为了探究自由基对共价键的诱导作用及其对共价键解离能的影响,采用基于密度泛函理论的研究方法,选择ωB97XD/6-31G**级别在Gaussian 09程序上对·CH3、·OH和·H分别诱导七类共价键反应过程的能量进行了理论计算。结果表明,空间位阻效应对自由基诱导反应能垒的影响占主要地位,共价键种类的影响相对次要;不存在·OH和·H的同基团诱导交换反应时,·OH诱导能垒比·H的高约40 kJ/mol,·CH3比·OH、·H的诱导能垒分别高约为50、90 kJ/mol;存在·OH或·H的同基团诱导交换反应时,会导致能垒约有70 kJ/mol的提高,在计算时应判断诱导反应的具体情况并加以修正。可以利用上述值估算不同共价键诱导反应的能垒。
  • FIG. 660.  FIG. 660.

    FIG. 660.  FIG. 660.

    图  1  五种方法的计算耗时与计算精度

    Figure  1  The calculation time and accuracy of five methods

    图  2  自由基诱导共价键的能量变化示意图

    Figure  2  Schematic diagram of the free energy change of induction reaction between covalent bond and radical

    图  3  ·CH3诱导七种共价键的能量变化

    Figure  3  Free energy change of seven covalent bonds induced by ·CH3

    (a): Cal−Cal; (b): Cal−Car; (c): Cal−H; (d): Car−H; (e): Cal−O;(f): Car−O; (g): O−H

    图  4  ·OH诱导七种共价键的能量变化

    Figure  4  The free energy change of seven covalent bonds induced by ·OH

    (a): Cal−Cal; (b): Cal−Car; (c): Cal−H; (d): Car−H; (e): Cal−O; (f): Car−O; (g): O−H

    图  5  ·H诱导七种共价键的能量变化

    Figure  5  The free energy change of seven covalent bonds induced by ·H

    (a): Cal−Cal; (b): Cal−Car; (c): Cal−H; (d): Car−H; (e): Cal−O; (f): Car−O; (g): O−H

    表  1  与自由基发生诱导反应的共价键

    Table  1  The covalent bonds induced by free radicals

    Cal−Cal Bond
    CH3-CH3CH3-C2H5
    CH3-CH2PhCH3-CH2CH=CH2
    CH3-CH2OHHOCH2-C2H5
    HOCH2-CH2OHCH3-CH2OCH3
    Cal−Car Bond
    C2H5-C2H3CH3-Ph
    C2H5-PhnC3H7-Ph
    HOCH2-Ph
    Cal−H Bond
    H-CH3H-C2H5
    H-CH2C2H5
    (H-CH2-cyclopropane)

    (cyclobutene)

    (cyclopentane)

    (cyclohexane)
    H-CH2OH
    H-CH2CH=CH2
    Car−H Bond
    H-CH=CH2H-CH=CHCH3
    H-PhH-C(OH)=CH2

    (naphthalene-αH)

    (naphthalene-βH)
    Cal−O Bond
    HO-CH3HO-C2H5
    HO-CH2C2H5HO-CH2CH2OH
    HO-CH2PhCH3-OCH3
    C2H5-OC2H5CH3-OC2H5
    CH3-OPhC3H7-OC2H3
    Car−O Bond
    HO-PhC3H7O-C2H3
    CH3O-PhC2H5O-Ph
    O−H Bond
    H-OCH3H-OC2H5
    H-OCH2C2H5H-OCH(CH3)2
    H-OPhH-OCH2Ph
    H-OPhOH(p)H-OPhCH3(p)
    下载: 导出CSV

    表  2  ·CH3诱导七种共价键的能垒范围和Gibbs能变化

    Table  2  Range of energy barrier and the change of delta G of seven covalent bonds induced by ·CH3

    Bonds REB/(kJ·mol−1RDG/(kJ·mol−1
    Cal−Cal277.7−320.1(−64.7)−0.0
    Cal−Car322.7−351.334.4−59.5
    Cal−H108.7−149.5(−80.4)−0.0
    Car−H123.7−146.110.7−38.2
    Cal−O220.6−296.8133.9−0.0
    Car−O311.4−347.845.0−75.1
    O−H100.1−125.7(−95.6)−11.8
    下载: 导出CSV

    表  3  ·OH诱导七种共价键的能垒范围和Gibbs能变化

    Table  3  The range of energy barrier and the change of delta G of seven covalent bonds induced by ·OH

    BondsREB/(kJ·mol−1RDG/(kJ·mol−1
    Cal−Cal227.8−264.2(−88.3)−(−23.6)
    Cal−Car270.8−295.2(−7.6)−35.9
    Cal−H63.8−92.9(−136.0)−(−55.5)
    Car−H82.5−92.8(−44.8)−(−17.4)
    Cal−OR−OH: 294.1−297.2
    R1O−R2: 205.8−253.3
    ROH: 120.2−161.5
    R1OR2: (−157.5)−(−65.1)
    Car−O325.5−370.1200.2−243.7
    O−H53.6−73.6(−151.5)−(−67.3)
    下载: 导出CSV

    表  4  ·H诱导七种共价键的能垒范围和Gibbs能变化

    Table  4  The range of energy barrier and the change of delta G of seven covalent bonds induced by ·H

    BondsREB/(kJ·mol−1RDG/(kJ·mol−1
    Cal−Cal207.1−238.2(−152.8)−(−88.1)
    Cal−Car235.9−265.2(−43.8)−(−28.6)
    Cal−H84.2−107.3(−95.6)−(−15.2)
    Car−H110.6−125.2(−4.5)−23.0
    Cal−O169.0−226.0(−221.9)−(−104.9)
    Car−O207.8−238.2(−102.4)−(−44.8)
    O−H82.5−105.9(−142.8)−(−27.0)
    下载: 导出CSV

    表  5  共价键的键解离能及诱导反应能垒

    Table  5  The BDEs and the energy barriers of the induction reaction

    Types of the covalenceBDEs/
    (kJ·mol−1
    Energy barriers/
    (kJ·mol−1
    Types of the covalenceBDEs/
    (kJ·mol−1
    Energy barriers/
    (kJ·mol−1
    C−C BondCal−Cal·CH3·OH·HH-Ph472.2144.490.9124.3
    CH3-CH3377.4302.7260.1219.2naphthalene (αH)469.4146.192.8125.2
    CH3-C2H5370.3308.1261.2224.7naphthalene (βH)468.2143.491.3124.3
    CH3-CH2OH364.8301.6250.5219.7C−O BondCal−O
    HOCH2-C2H5356.9320.1252.0237.1HO-CH3384.9268.6297.2180.5
    HOCH2-CH2OH358.2316.2227.8238.2HO-C2H5391.2268.1290.3182.2
    CH3-CH2OCH3363.2277.7253.9207.1HO-CH2C2H5392.0267.5293.6180.3
    CH3-CH2C2H3317.6290.1245.8213.7HO-CH2Ph340.2244.2263.4169.0
    CH3-CH2Ph319.7293.7250.1216.7Cal−O·CH3·OH·H
    Cal−CarHO-CH2CH2OH338.9269.4294.1181.7
    C2H5-C2H3418.4338.1286.6254.6CH3-OCH3349.8276.2253.3205.8
    CH3-Ph426.8322.7284.5235.9CH3-OC2H5348.1274.8249.3204.9
    C2H5-Ph419.2348.2295.2260.2C2H5-OC2H5355.6296.8259.1226.0
    nC3H7-Ph421.7351.3293.7261.8CH3-OPh268.6233.0205.8173.8
    HOCH2-Ph413.4342.3270.8265.2C3H7-OC2H3274.1286.8238.4241.2
    C−H BondCal−HCar−O
    H-CH3439.3125.670.7102.8HO-Ph463.6311.4355.0216.9
    H-C2H5420.5122.166.893.6C3H7O-C2H3431.0347.8370.1237.2
    H−CH2C2H5422.2149.577.1106.2CH3O-Ph416.7315.5325.1207.8
    H−CH2-
    topcyclopropane
    407.5137.485.5107.3C2H5O-Ph416.7316.6337.6209.4
    cyclobutane405.0127.378.997.5O−H BondH-OCH3437.7110.372.1105.1
    cyclopentane400.0139.292.9106.9H-OC2H5438.1119.073.6105.9
    cyclohexane
    (chair form)
    416.3126.973.298.1H-OCH2C2H5432.6117.872.8104.1
    H−CH2CH=CH2369.0108.763.884.2H-OC(CH3)2442.3112.665.898.6
    H−CH2OH401.9120.578.694.0H-OCH2Ph425.5118.372.7105.3
    Car−HH-OCH=CH2355.6107.567.4104.1
    H−CH=CH2465.3140.387.6117.4H-OPh368.2125.767.9104.3
    H−C(CH3)=CH2464.8134.482.5110.6H-OPhCH3(p)374.0106.469.0104.5
    H−C(OH)=CH2400.0123.783.4112.7H-OPhOH(p)352.0100.164.595.6
    下载: 导出CSV
  • [1] MORGAN T J, KANDIYOTI R. Pyrolysis of coals and biomass: Analysis of thermal breakdown and its products[J]. Chem Rev,2014,114(3):1547−1607. doi: 10.1021/cr400194p
    [2] 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报: 自然科学版,2018,45(5):8−24.

    LIU Zhen-yu. Radical chemistry in the pyrolysis of heavy organics[J]. J Beijing Univ Chem Technol (nat Sci Ed),2018,45(5):8−24.
    [3] ZHENG M, LI X X, WANG M J, GUO L. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel,2019,253:910−920. doi: 10.1016/j.fuel.2019.05.085
    [4] GUO X J, LIU Z Y, LIU Q Y, SHI L. Modeling of kraft lignin pyrolysis based on bond dissociation and fragments coupling[J]. Fuel Process Technol,2015,135:133−149. doi: 10.1016/j.fuproc.2014.12.009
    [5] LEWAN M D. Sulphur-radical control on petroleum formation rates[J]. Nature,1998,39:164−166.
    [6] SHI L, LIU Q Y, GUO X J, WU W Z, LIU Z Y. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Process Technol,2013,108:125−132.
    [7] He W J, LIU Z Y, LIU Q Y, CI D H, LIEVENS C, GUO X F. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel,2014,134:375−380.
    [8] SHI L, LIU Q Y, GUO X J, HE W J, LIU Z Y. Pyrolysis of coal in TGA: Extent of volatile condensation in crucible[J]. Fuel Process Technol,2014,121:91−95. doi: 10.1016/j.fuproc.2014.01.013
    [9] LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles-A crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369.
    [10] LIU X P, ZHAN J H, LAI D G, LIU X X, ZHANG Z J, XU G W. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation[J]. Energy Fuels,2015,29(5):2987−2997.
    [11] WANG Q, HOU Y C, WU W Z, NIU M G, REN S H, LIU Z Y. The relationship between the humic degree of oil shale kerogens and their structural characteristics[J]. Fuel,2017,209:35−42.
    [12] ZHAO X S, LIU Z Y, LU Z H, SHI L, LIU Q Y. A study on average molecular structure of eight oil shale organic matters and radical information during pyrolysis[J]. Fuel,2018,219:399−405.
    [13] 张晓亮. 油页岩有机质结构组成及其热断裂行为研究[D]. 北京: 北京化工大学, 2015.

    ZHANG Xiao-liang. Study on structure composition and thermal fracture behavior of oil shale organic matter[D]. Beijing: Beijing University of Chemical Technology, 2015.
    [14] 郭啸晋. 煤热解过程中挥发物反应的共价键断裂—生成模型研究[D]. 北京: 北京化工大学, 2015.

    GUO Xiao-jin. Study on model of covalent bond’s cleavage and coupling in reaction of volatiles during caol pyrolysis[D]. Beijing: Beijing University of Chemical Technology, 2015.
    [15] SIDWELL B L, MCKINNEY L E, BOZEMAN M F, EGBUJOR P C, EATON G R, EATON S S, NETZEL D A. Electron paramagnetic resonance studies of oil shale, shale oil, and spent shale[J]. Geochim Cosmochim Acta,1979,43(8):1337−1342. doi: 10.1016/0016-7037(79)90123-6
    [16] FOWLER T G, BARTLE K D, KANDIYOTI R. Limitations of electron spin resonance spectroscopy in assessing the role of free radicals in the thermal reactions of coal[J]. Energy Fuels,1989,3(4):515−522. doi: 10.1021/ef00016a015
    [17] RICHTER H, HOWARD J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways[J]. Prog Energ Combust,2000,26(4):565−608.
    [18] WANG W, MA Y, LI S Y, SHI J, TENG J S. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy Fuels,2016,30(2):830−834.
    [19] 石剑, 李术元, 马跃. 爱沙尼亚油页岩及其热解产物的电子顺磁共振研究[J]. 燃料化学学报,2018,46(1):1−7. doi: 10.3969/j.issn.0253-2409.2018.01.001

    SHI Jian, LI Shu-yuan, MA Yue. Electron paramagnetic resonance (EPR) properties of Estonia oil shale and its pyrolysates[J]. J Fuel Chem Technol,2018,46(1):1−7. doi: 10.3969/j.issn.0253-2409.2018.01.001
    [20] LIU M X, YANG J L, LIU Z Y, HE W J, LIU Q Y, LI Y M, YANG Y. Cleavage of covalent bonds in the pyrolysis of lignin, cellulose, and hemicellulose[J]. Energy Fuels,2015,29(9):5773−5780.
    [21] LIU M X, YANG J L, YANG Y, LIU Z Y, SHI L, HE W J, LIU Q Y. The radical and bond cleavage behaviors of 14 coals during pyrolysis with 9,10-dihydrophenanthrene[J]. Fuel,2016,182:480−486.
    [22] ZHAO X, LIU Z, LIU Q. The bond cleavage and radical coupling during pyrolysis of Huadian oil shale[J]. Fuel,2017,199:169−175.
    [23] 郭啸晋, 刘振宇, 刘清雅, 肖云汉, 徐祥, 薛小勇. 基于共价键结构BMCP热解模型的建立和发展[J]. 中国基础科学,2018,20(4):21−26. doi: 10.3969/j.issn.1009-2412.2018.04.005

    GUO Xiao-jin, LIU Zhen-yu, LIU Qing-ya, XIAO Yun-han, XU Xiang, XUE Xiao-yong. The establishment and Development of BMCP Model on Pyrolysis from Covalent Bond Perspective[J]. China Basic Sci,2018,20(4):21−26. doi: 10.3969/j.issn.1009-2412.2018.04.005
    [24] GUO X J, LIU Z Y XIAO Y H, XU X, XUE X Y, LIU Q Y. The Boltzmann-Monte-Carlo-Percolation (BMCP) model on pyrolysis of coal: The volatiles' reactions[J]. Fuel,2018,230:18−26.
    [25] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Revision D.01; Gaussian, Inc. Wallingford CT, 2013.
    [26] GRIMME S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. J Chem Phys,2006,124(3):34108−34116. doi: 10.1063/1.2148954
    [27] LI L, FAN H J, HU H Q. Assessment of contemporary theoretical methods for bond dissociation enthalpies[J]. Chin J Chem Phys,2016,29(4):453−461. doi: 10.1063/1674-0068/29/cjcp1512266
    [28] SCHWABE T, GRIMME S. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects[J]. Phys Chem Chem Phys,2006,8(38):4398−4401. doi: 10.1039/b608478h
    [29] LI L, FAN H, HU H. A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel,2015,153:70−77.
    [30] CHAI J D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Phys Chem Chem Phys,2008,10(44):6615−6620. doi: 10.1039/b810189b
    [31] ASATRYAN R, HUDZIK J M, BOZZELLI J W, KHACHATRYAN L, RUCKENSTEIN E. OH-initiated reactions of p-coumaryl alcohol relevant to the lignin pyrolysis. Part I. Potential energy surface analysis[J]. J Phys Chem A,2019,123:2570−2585. doi: 10.1021/acs.jpca.9b00185
    [32] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, FRISCH M J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J Phys Chem,1994,98(45):11623−11627.
    [33] HU B, LU Q, ZHANG Z X, WU Y T, LI K, DONG C Q, YANG Y P. Mechanism insight into the fast pyrolysis of xylose, xylobiose and xylan by combined theoretical and experimental approaches[J]. Combust Flame,2019,206:177−188. doi: 10.1016/j.combustflame.2019.04.052
    [34] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor Chem Acc,2008,120:215−241.
    [35] LU Q, HU B, ZHANG Z X, WU Y T, CUI M S, LIU D J, DONG C Q, YANG Y P. Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units[J]. Combust Flame,2018,198:267−277.
    [36] LUO Y R. Comprehensive Handbook of Chemical Bond Energies[M]. Boca Raton: CRC Press, 2006.
    [37] SHAO C F, SHAO Q, WANG X Y, LING J, GUO X, NING Y L, DAI Y J, JIA S R, QIAO Y Y, LI C W, ZHAO K. Study on cellulose degradation induced by hydroxyl radical with cellobiose as a model using GC-MS, ReaxFF simulation and DFT computation[J]. Carbohyd Polym,2020,233:115677.
    [38] HE W J, LIU Q Y, SHI L, LIU Z Y, CI D H, LIEVENS C, GUO X F, LIU M X. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals[J]. Bioresource Technol,2014,156:372−375.
    [39] ZHU C, CAO J P, FENG X B, ZHAO X Y, YANG Z, LI J, ZHAO M, ZHAO Y P, BAI H C. Theoretical insight into the hydrogenolysis mechanism of lignin dimer compounds based on experiments[J]. Renewable Energy,2021,163:1831−1837. doi: 10.1016/j.renene.2020.10.094
  • 001_2020-ZD-18-支撑材料--中文.pdf
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  39
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-01-26
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回