留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完全液相法制备CuZnAl催化剂中Si含量对二甲醚直接合成性能的影响

孙凯 程淑艳 王贵儒 边仲凯 张琳 黄伟

孙凯, 程淑艳, 王贵儒, 边仲凯, 张琳, 黄伟. 完全液相法制备CuZnAl催化剂中Si含量对二甲醚直接合成性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60068-3
引用本文: 孙凯, 程淑艳, 王贵儒, 边仲凯, 张琳, 黄伟. 完全液相法制备CuZnAl催化剂中Si含量对二甲醚直接合成性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60068-3
SUN Kai, CHENG Shu-Yan, WANG Gui-Ru, BIAN Zhong-Kai, ZHANG Lin, HUANG Wei. Effect of Si content on the performance direct synthesis of dimethyl ether over slurry CuZnAl catalyst prepared by complete liquid phase technology[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60068-3
Citation: SUN Kai, CHENG Shu-Yan, WANG Gui-Ru, BIAN Zhong-Kai, ZHANG Lin, HUANG Wei. Effect of Si content on the performance direct synthesis of dimethyl ether over slurry CuZnAl catalyst prepared by complete liquid phase technology[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60068-3

完全液相法制备CuZnAl催化剂中Si含量对二甲醚直接合成性能的影响

doi: 10.1016/S1872-5813(21)60068-3
基金项目: 太原科技大学博士启动基金(20192064和20192060), 山西省青年基金项目(201901D211297), 来晋工作优秀博士奖励基金(20202015), 国家自然科学基金(21975173)资助
详细信息
    通讯作者:

    E-mail: sunkai@tyust.edu.cn

    E-mail: sunkai@tyust.edu.cn

  • 中图分类号: O643

Effect of Si content on the performance direct synthesis of dimethyl ether over slurry CuZnAl catalyst prepared by complete liquid phase technology

Funds: The project was supported by the Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (Nos.20192064 and 20192060), the Shanxi Province Science Foundation for Youths (No.201901D211297), Outstanding Doctoral Award Fund in Shanxi Province (No.20202015) and National Natural Science Foundation of China (No.21975173)
  • 摘要: 在完全液相法制备工艺中,考察不同Si含量对浆状CuZnAl催化剂上合成气直接制备二甲醚性能的影响。其中,SA0.5催化剂(Si/Al=0.5)显示了最优异的催化性能,CO转化率为63.31%,二甲醚选择性为72.96%,在反应480 h过程中催化剂催化性能稳定。通过X射线衍射(XRD)、透射电子显微镜(TEM)和氮气吸脱附表征发现,Si的引入促进了催化剂Cu物种颗粒的分散及比表面积的增大,提高了CO转化率。此外,氢气程序升温还原(H2-TPR)和X射线光电子能谱(XPS)表征揭示了Cu物种与催化剂其它组分(Si物种)之间存在电子相互作用,抑制了Cu物种还原,催化剂表面富集更多Cu+物种,有利于甲醇合成,同时有效地抑制了水煤气副反应产物CO2的生成。再者,SA0.5催化剂表面富集了大量的Al物种(AlOOH),有利于甲醇脱水,促进二甲醚的生成。总之,浆状CuZnAlSi体系中Cu+和AlOOH协同催化作用,提高了催化剂活性及二甲醚选择性。
  • 图  1  (a)不同催化剂在的反应性能数据和(b)SA0.5催化剂在反应480 h过程中稳定性测试数据

    Figure  1.  (a) Catalytic performance of different catalysts and (b) CO conversion and selectivity of DME for SA0.5 catalyst with reaction time on stream

    图  2  不同催化剂反应前的XRD谱图

    Figure  2.  XRD patterns of different catalysts before reaction

    图  3  (a)SA0, (b)SA0.5催化剂反应前TEM图; (c) SA0.5催化剂反应前HRTEM图及相应傅里叶变换图

    Figure  3.  TEM images of fresh (a) SA0 and (b) SA0.5 catalyst; (c) the HRTEM image of fresh SA0.5 catalyst and its corresponding FFT

    图  4  不同催化剂反应前的H2-TPR谱图

    Figure  4.  H2-TPR profiles of different catalysts before reaction

    图  5  不同催化剂反应前(a)氮吸附脱附等温曲线和(b)孔径分布曲线

    Figure  5.  (a) N2 adsorption-desorption isotherms and (b) pore size distribution curves of the fresh catalysts

    图  6  催化剂反应前Cu 2p XPS谱图

    Figure  6.  Cu 2p XPS spectra of the fresh catalysts

    图  7  催化剂反应前Si 2p XPS谱图

    Figure  7.  Si 2p XPS spectra of the fresh catalysts

    表  1  不同催化剂试样比表面积及孔结构参数

    Table  1.   Specific surface area and pore structure parameters of different catalysts

    SamplesBET surface area A/(m2·g−1)Pore volume v/(cm3·g−1)Average pore diameter d/nm
    SA0128.00.299.2
    SA0.25133.50.246.8
    SA0.5162.70.225.8
    SA1151.40.236.1
    下载: 导出CSV

    表  2  不同催化剂反应前Cu物种结合能及俄歇动能数据

    Table  2.   Binding Energy (BE) and Kinetic Energy (KE) of Cu species over fresh catalysts

    CatalystsBE (eV)KE (eV)αCu
    SA0932.5916.31848.8
    SA0.25932.4916.51848.9
    SA0.5932.2916.41849.0
    SA1.0932.0916.81848.8
    下载: 导出CSV

    表  3  不同催化剂反应前表面元素物质的量之比

    Table  3.   Molar ratios between relevant elements on fresh catalysts

    CatalystsSi/AlCu/ZnZn/AlAl/(Cu+Zn)
    SA0.250.320.580.134.86
    SA0.50.240.670.115.27
    SA1.00.500.360.174.46
    下载: 导出CSV
  • [1] FARRELL A E, PLEVIN R J, TURNER B T, JONES A D, HARE M, KAMMEN D M. Ethanol can contribute to energy and environmental goals[J]. Science,2006,311(5760):506−508. doi: 10.1126/science.1121416
    [2] SARAVANAN K, HAM H, TSUBAKI N, BAE J W. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts[J]. Appl Catal B: Environmental,2017,217:494−522. doi: 10.1016/j.apcatb.2017.05.085
    [3] CAI M, PALČIĆ A, SUBRAMANIAN V, MOLDOVAN S, ERSEN O, VALTCHEV V, ORDOMSKY V V, KHODAKOV A Y. Direct dimethyl ether synthesis from syngas on copper-zeolite hybrid catalysts with a wide range of zeolite particle sizes[J]. J Catal,2016,338:227−238. doi: 10.1016/j.jcat.2016.02.025
    [4] SUN J, YANG G, YONEYAMA Y, TSUBAKI N. Catalysis chemistry of dimethyl ether synthesis[J]. ACS Catal,2014,4(10):3346−3356. doi: 10.1021/cs500967j
    [5] ARCOUMANIS C, BAE C, CROOKES R, KINOSHITA E. The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review[J]. Fuel,2008,87 (7):1014−1030. doi: 10.1016/j.fuel.2007.06.007
    [6] JEONG J, AHN C, LEE D, UM S, BAE J. Effects of Cu-ZnO content on reaction rate for direct synthesis of DME from syngas with bifunctional Cu–ZnO/γ-Al2O3 Catalyst[J]. Catal Lett,2013,143(7):666−672. doi: 10.1007/s10562-013-1022-6
    [7] BAE J, POTDAR H S, KANG S, JUN K. Coproduction of methanol and dimethyl ether from biomass-derived syngas on a Cu-ZnO-Al2O3/γ-Al2O3 hybrid catalyst[J]. Energy & Fuels,2008,22(1):223−230.
    [8] VENUGOPAL A, PALGUNADI J, DEOG J K, JOO O, SHIN C. Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M=Ga, La, Y, Zr) and γ-Al2O3: The role of modifier[J]. J Mol Catal A: Chemical,2009,302 (1):20−27.
    [9] PALOMO J, RODRÍGUEZ M Á, RODRÍGUEZ J, CORDERO T. ZSM-5-decorated CuO/ZnO/ZrO2 fibers as efficient bifunctional catalysts for the direct synthesis of DME from syngas[J]. Appl Catal B: Environmental,2020,270:118893. doi: 10.1016/j.apcatb.2020.118893
    [10] AGUAYO A T, EREÑA J, MIER D, ARANDES J M, OLAZAR M, BILBAO J. Kinetic modeling of dimethyl ether synthesis in a single step on a CuO-ZnO-Al2O3/γ-Al2O3 catalyst[J]. Ind Eng Chem Res,2007,46(17):5522−5530. doi: 10.1021/ie070269s
    [11] FUJIMOTO K, ASAMI K, SHIKADA T, TOMINAGA H. Selective synthesis of dimethyl ether from synthesis gas[J]. Chem Lett,1984,13 (12):2051−2054. doi: 10.1246/cl.1984.2051
    [12] YANG G, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc,2010,132(23):8129−8136. doi: 10.1021/ja101882a
    [13] GARCÍA T A, MARTÍNEZ A. Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity[J]. Appl Catal A: General,2012,411-412:170−179. doi: 10.1016/j.apcata.2011.10.036
    [14] TAN Y, XIE H, CUI H, HAN Y, ZHONG B. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase[J]. Catal Today,2005,104 (1):25−29. doi: 10.1016/j.cattod.2005.03.033
    [15] SONG F, TAN Y, XIE H, ZHANG Q, HAN Y. Direct synthesis of dimethyl ether from biomass-derived syngas over Cu-ZnO-Al2O3-ZrO2(x)/γ-Al2O3 bifunctional catalysts: Effect of Zr-loading[J]. Fuel Process Technol,2014,126:88−94. doi: 10.1016/j.fuproc.2014.04.021
    [16] TIAN S, TAN M, MA Q, WU X, LUAN C, FANG Y, LI H, YANG G, TSUBAKI N, TAN Y. LDH-Derived (CuZn)xAly bifunctional catalyst for direct synthesis of dimethyl ether from syngas[J]. Ind Eng Chem Res,2020,59(23):11087−11097. doi: 10.1021/acs.iecr.0c01508
    [17] 黄伟, 高志华, 郝利峰, 阴丽华, 谢克昌. 浆态床催化剂及制备方法: 中国, 1314491C [P]. 2007-05-09.

    HUANG Wei, GAO Zhi-hua, HAO Li-fen, Yin Li-hua, XIE Ke-chang. The liquid phase preparation technology of catalyst used in slurry reactor: CN, 1314491C [P]. 2007-05-09.
    [18] GAO Z, HUANG W, YIN L, XIE K. Liquid-phase preparation of catalysts used in slurry reactors to synthesize dimethyl ether from syngas: Effect of heat-treatment atmosphere[J]. Fuel Process Technol,2009,90 (12):1442−1446. doi: 10.1016/j.fuproc.2009.06.022
    [19] FAN J, CHEN C, ZHAO J, HUANG W, XIE K. Effect of surfactant on structure and performance of catalysts for DME synthesis in slurry bed[J]. Fuel Process Technol,2010,91 (4):414−418. doi: 10.1016/j.fuproc.2009.05.005
    [20] WANG P, HUANG W, ZHANG G, GAO Z, TANG Y, SUN K, ZHANG X. The facile preparation of Cu-Zn-Al oxide composite catalysts with high stability and performance for the production of dimethyl ether using modified aluminum alkoxide[J]. J Ind Eng Chem,2015,26:243−250. doi: 10.1016/j.jiec.2014.12.001
    [21] SUN K, WANG P, BIAN Z, HUANG W. An investigation into the effects of different existing states of aluminum isopropoxide on copper-based catalysts for direct synthesis of dimethyl ether from syngas[J]. Appl Surf Sci,2018,428:534−540. doi: 10.1016/j.apsusc.2017.09.159
    [22] 孙凯, 张小雨, 张琳, 边仲凯, 黄伟, 赵志换. 酸碱性硅溶胶对浆状Cu/Zn/Al催化剂性能的影响[J]. 燃料化学学报,2015,43(10):1221−1229. doi: 10.1016/S1872-5813(15)30037-2

    SUN Kai, ZHANG Xiao-yu, ZHANG Lin, BIAN Zhong-kai, HUANG Wei, ZHAO Zhi-huan. Influence of acid and alkaline silica sol on the performance of Cu/Zn/Al slurry catalysts[J]. J Fuel Chem Technol,2015,43(10):1221−1229. doi: 10.1016/S1872-5813(15)30037-2
    [23] SUN K, WU Y, TAN M, WANG L, YANG G, ZHANG M, ZHANG W, TAN Y. Ethanol and higher alcohols synthesis from syngas over CuCoM (M=Fe, Cr, Ga and Al) nanoplates derived from hydrotalcite-like precursors[J]. ChemCatChem,2019,11(11):2695−2706. doi: 10.1002/cctc.201900096
    [24] CHEN W, FAN Z, LAI Z. Synthesis of core–shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts[J]. J Mater Chem A,2013,1 (44):13862−13868. doi: 10.1039/c3ta13413j
    [25] LI Z, ZUO Z, HUANG W, XIE K. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor[J]. Appl Surf Sci,2011,257 (6):2180−2183. doi: 10.1016/j.apsusc.2010.09.069
    [26] HUANG W C, LYU L M, YANG Y C, HUANG M H. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity[J]. J Am Chem Soc,2012,134(2):1261−1267. doi: 10.1021/ja209662v
    [27] SUI Y, FU W, ZENG Y, YANG H, ZHANG Y, CHEN H, LI Y, LI M, ZOU G. Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature[J]. Angew Chem Int Edit,2010,49(25):4282−4285. doi: 10.1002/anie.200907117
    [28] WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chem Eng J,2016,293:327−336. doi: 10.1016/j.cej.2016.02.069
    [29] SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol,2018,8 (15):3936−3947. doi: 10.1039/C8CY01074A
    [30] WU J, GAO G, SUN P, LONG X, LI F. Synergetic catalysis of bimetallic cuco nanocomposites for selective hydrogenation of bioderived esters[J]. ACS Catal,2017,7(11):7890−7901. doi: 10.1021/acscatal.7b02837
    [31] YAO X, TANG C, GAO F, DONG L. Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts[J]. Catal Sci Technol,2014,4 (9):2814−2829. doi: 10.1039/C4CY00397G
    [32] SUN K, TAN M, BAI Y, GAO X, WANG P, GONG N, ZHANG T, YANG G, TAN Y. Design and synthesis of spherical-platelike ternary copper-cobalt-manganese catalysts for direct conversion of syngas to ethanol and higher alcohols[J]. J Catal,2019,378:1−16. doi: 10.1016/j.jcat.2019.08.013
    [33] CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal,2008,257 (1):172−180. doi: 10.1016/j.jcat.2008.04.021
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  4
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-23

目录

    /

    返回文章
    返回