留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铵盐对TS-1分子筛合成过程中钛物种分布的影响

佘豪豪 丁国强 李显清 王洪星 朱玉雷 李永旺

佘豪豪, 丁国强, 李显清, 王洪星, 朱玉雷, 李永旺. 铵盐对TS-1分子筛合成过程中钛物种分布的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60071-3
引用本文: 佘豪豪, 丁国强, 李显清, 王洪星, 朱玉雷, 李永旺. 铵盐对TS-1分子筛合成过程中钛物种分布的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60071-3
SHE Hao-hao, DING Guo-qiang, LI Xian-qing, WANG Hong-xing, ZHU Yu-lei, LI Yong-wang. Effect of ammonium salt on the distribution of titanium species in the synthesis of TS-1 zeolites[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60071-3
Citation: SHE Hao-hao, DING Guo-qiang, LI Xian-qing, WANG Hong-xing, ZHU Yu-lei, LI Yong-wang. Effect of ammonium salt on the distribution of titanium species in the synthesis of TS-1 zeolites[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60071-3

铵盐对TS-1分子筛合成过程中钛物种分布的影响

doi: 10.1016/S1872-5813(21)60071-3
基金项目: 国家重点研发计划(2018YFB1501602)资助
详细信息
    通讯作者:

    Tel: +86-010-69667798, E-mail: zhuyulei@sxicc.ac.cn

Effect of ammonium salt on the distribution of titanium species in the synthesis of TS-1 zeolites

Funds: The project was supported by the National Key R & D Program of China (2018YFB1501602)
  • 摘要: 以(NH)4SO4作为晶化调节剂,通过调节铵盐添加量,合成出了不同钛物种分布的TS-1-X系列分子筛(X为铵盐与SiO2的摩尔比)。通过ICP-AES、FT-IR、UV-Vis、UV-Raman等表征对TS-1-X系列分子筛中钛物种分布进行了系统的研究。以1-己烯环氧化为探针反应,考查了TS-1-X分子筛的催化性能。研究结果表明,适量铵盐不仅有利于钛从液相向固相富集,促进Ti元素进入MFI骨架结构,还有利于抑制晶粒过快生长,得到晶粒粒径小且分布均匀的TS-1分子筛;而过量的(NH)4SO4反而利于锐钛矿TiO2、无定型钛等非骨架钛物种的形成,同时促进晶粒过快生长得到大晶粒TS-1分子筛。最后,当n((NH4)2SO4/SiO2) = 0.2时合成出反应性能最佳的骨架富钛TS-1,其对1-己烯转化率高达42%,同时H2O2的有效利用率为81.8%。此外,通过实验和表征考察了铵盐中各组分对TS-1性质的影响,发现铵盐通过自身的阴离子以及对pH的改变,对TS-1晶化体系进行调节。
  • 图  1  酸洗前后TS-1-0.25的UV-Vis谱图

    Figure  1.  UV-Vis spectra of TS-1-0.25 (A) and TS-1-0.25-W (B)

    图  2  不同TS-1分子筛样品的XRD谱图(A)和晶化曲线(B)

    Figure  2.  XRD patterns (A) and crystallization curves (B) of different TS-1 samples

    图  3  不同TS-1分子筛的SEM照片

    Figure  3.  SEM images of different TS-1 samples: (a): TS-1-0; (b): TS-1-0.05; (c): TS-1-0.1; (d): TS-1-0.15; (e): TS-1-0.2; (f): TS-1-0.25

    图  4  不同TS-1分子筛的SEM照片

    Figure  4.  SEM images of different TS-1 samples: (a): TS-1-A; (b): TS-1-B; (c): TS-1-C

    图  5  不同TS-1分子筛的FT-IR谱图(A)和钛含量、I960/800曲线(B)

    Figure  5.  FT-IR spectra of different TS-1 samples(A) and the curves of Ti content and I960/800 (B) in different TS-1 samples

    图  6  不同TS-1分子筛的UV-Vis谱图

    Figure  6.  UV-Vis spectra of different TS-1 samples

    图  7  不同TS-1分子筛在325 nm(A)和532 nm(B)下的UV-Raman谱图

    Figure  7.  UV-Raman spectra of different TS-1 samples: 325 nm (A), 532 nm (B)

    图  8  不同TS-1分子筛的XPS谱图

    Figure  8.  The XPS results of Ti 2p and O 1s spectra in different TS-1 samples

    图  9  不同TS-1样品的晶胞体积和I960/800的关系

    Figure  9.  Relationship between the unit-cell volume and I960/800 of different TS-1 samples (the unit-cell volume was calculated by using JADE 6.5 software)

    图  10  不同TS-1分子筛的STEM-EDX谱图

    Figure  10.  STEM-EDX images of the six TS-1 samples: (a): TS-1-0; (b): TS-1-0.05; (c): TS-1-0.1; (d): TS-1-0.15; (e): TS-1-0.2; (f): TS-1-0.25

    图  11  TS-1分子筛催化1-己烯环氧化反应方案

    Figure  11.  Scheme of 1- hexene epoxidation catalyzed by TS-1 samples

    图  12  不同TS-1分子筛的UV-Vis谱图

    Figure  12.  UV-Vis spectra of different TS-1 samples

    图  13  阴离子与Ti物种可能的相互作用机制

    Figure  13.  Possible mechanism of interaction between anions and Ti: Different Ti-anion clathrates (a); Mediating mechanism in suit content of anion(b) and in overdose content of anion(c)

    表  1  不同铵盐下TS-1合成体系pH及钛分布

    Table  1.   Titanium distribution and pH in different systems of TS-1

    CatalystspHTi/Si+Ti /%a
    In liquidIn solid
    TS-1-011.96.21.6
    TS-1-0.0511.65.61.7
    TS-1-0.111.45.41.8
    TS-1-0.1511.15.12.0
    TS-1-0.210.74.72.3
    TS-1-0.2510.01.23.9
    下载: 导出CSV

    表  2  不同方法对钛物种的定量结果

    Table  2.   Quantitative results of Ti species from different methods

    SamplesICPSi/
    Ti
    XPSSi/
    Ti
    Tiframework/
    Titotal
    (XPS)
    I960/800Unit-cell
    Volume (A3)
    TS-1-061.502.3871.051.295330.54
    TS-1-0.0557.821.9394.651.375334.26
    TS-1-0.154.561.9986.911.415338.02
    TS-1-0.1549.002.0980.112.025349.23
    TS-1-0.242.482.5375.812.405352.86
    TS-1-0.2524.6419.1312.671.055321.20
    下载: 导出CSV

    表  3  不同TS-分子筛催化剂上1-己烯环氧化反应的评价结果

    Table  3.   The catalytic epoxidation of 1-hexene over different TS-1 catalysts

    Catalysts1-hexene conv. x/%Sel. s/%H2O2 conv. x/%H2O2 η/%TON
    EpoxideOthers
    TS-1-031.186.813.242.872.6235.1
    TS-1-0.0535.683.316.743.382.1248.3
    TS-1-0.137.981.318.745.982.5255.1
    TS-1-0.1538.580.819.246.383.2243.7
    TS-1-0.242.880.119.948.887.7231.3
    TS-1-0.2514.487.212.841.934.342.0
    下载: 导出CSV

    表  4  不同TS-分子筛催化剂上1-己烯环氧化反应的评价结果

    Table  4.   The catalytic epoxidation of 1-hexene over different TS-1 catalysts

    SamplespHSi/TiI960/8001-hexene
    conv. x/%
    H2O2 η/%TON
    TS-1-A11.1451.41.9338.583.2243.6
    TS-1-B11.0256.91.7634.881.3243.2
    TS-1-C10.7961.91.4932.682.5247.4
    下载: 导出CSV

    表  5  不同TS-分子筛催化剂上1-己烯环氧化反应的评价结果

    Table  5.   The catalytic epoxidation of 1-hexene over different TS-1 catalysts

    CatalystsSi/Ti1-hexeneconv. x/%Sel. s /%H2O2 conv. x/%H2O2 η/%TON
    EpoxideOthers
    TS-1-061.5031.186.813.242.872.6235.1
    TS-1-N61.3131.086.313.742.572.9233.0
    下载: 导出CSV
  • [1] YAN W J, ZHANG G Y, YAN H, LIU Y B, CHEN X B, FENG X, JIN X, YANG C H. Liquid-phase epoxidation of light olefins over w and nb nanocatalysts[J]. ACS Sustainable Chem Eng,2018,6(4):4423−4452. doi: 10.1021/acssuschemeng.7b03101
    [2] TARAMASSO M, PEREGO G, NOTARI B. Crystalline, porous material with silicalite structure-prepd. from silica and titanium oxide cpds. and used e. g. for alkylation, cracking etc. of organic cpds: US, 4410501[P]. 1983-10-18.
    [3] MANTEGAZZA M A, LEOFANTI G, PETRINI G, PADOVAN M, ZECCHINA A, BORDIGA S. Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts[J]. Stud Surf Sci Catal,1994,82:541−550.
    [4] XU L, PENG H G, ZHANG K, WU H H, CHEN L, LIU Y M, WU P. Core-shell-structured titanosilicate as a robust catalyst for cyclohexanone ammoximation[J]. ACS Catal,2013,3(1):103−110. doi: 10.1021/cs3006007
    [5] YANG L B, XIN F, LIN J Z, ZHUANG Z, SUN R. Continuous heterogeneous cyclohexanone ammoximation reaction using a monolithic TS-1/cordierite catalyst[J]. RSC Adv,2014,4 (52):27259−27266. doi: 10.1039/C4RA01789G
    [6] KONG L Y, LI G, WANG X S. Mild oxidation of thiophene over TS-1/H2O2[J]. Catal Today,2004,93−95:341−345. doi: 10.1016/j.cattod.2004.06.016
    [7] GAO G H, CHENG S F, AN Y, SI X J, FU X L, LIU Y M, ZHANG H J, WU P, HE M Y. Oxidative desulfurization of aromatic sulfur compounds over titanosilicates[J]. ChemCatChem,2010,2(4):459−466. doi: 10.1002/cctc.200900073
    [8] 刘斌, 李钢, 王祥生. TS-1/H2O2催化模拟汽油中噻吩的选择氧化研究[J]. 燃料化学学报,2006,34(5):629−632. doi: 10.3969/j.issn.0253-2409.2006.05.023

    LIU Bin, LI Gang, WANG Xiang-sheng. Selective oxidation of thiophene from model gasoline over TS-1/H2O2[J]. J Fuel Chem Technol,2006,34(5):629−632. doi: 10.3969/j.issn.0253-2409.2006.05.023
    [9] SHEN C, WANG Y J, XU J H, LUO G S. Synthesis of TS-1 on porous glass beads for catalytic oxidative desulfurization[J]. Chem Eng J,2015,259:552−561. doi: 10.1016/j.cej.2014.08.027
    [10] MILLINI R, MASSARA E P, PEREGO G, BELLUSS G. J Catal,1992,137:497−503. doi: 10.1016/0021-9517(92)90176-I
    [11] NOTARI B. Titanium silicalites[J]. Catal Today,1993,18(2):163−172. doi: 10.1016/0920-5861(93)85029-Y
    [12] 陈晓晖, 林民, 陈宪, 米镇涛, 许锡恩. TS-1的丙烯环氧化性能研究[J]. 燃料化学学报,2001,21(5):426−429. doi: 10.3969/j.issn.0253-2409.2001.05.010

    CHEN Xiao-hui, LIN Min, CHEN Xian, MI Zhen-tao, XU Xi-en. Study on the epoxidation of propylene with catalyst TS-1[J]. J Fuel Chem Technol,2001,21(5):426−429. doi: 10.3969/j.issn.0253-2409.2001.05.010
    [13] KUWAHARA Y, NISHIZAWA K, NAKAJIMA T, KAMEGAWA T, MORI K, YAMASHITA H. Enhanced catalytic activity on titanosilicate molecular sieves controlled by cation-pi interactions[J]. J Am Chem Soc,2011,133(32):12462−12465. doi: 10.1021/ja205699d
    [14] CORDEIRO P J, TILLEY T D. Enhancement of the catalytic activity of titanium-based terminal olefin epoxidation catalysts via surface modification with functionalized protic molecules[J]. ACS Catal,2011,1(5):455−467. doi: 10.1021/cs200017s
    [15] 马书启, 李钢, 王祥生, 金长子, 刘民, 郭新闻. 钛硅分子筛催化1-丁烯环氧化研究[J]. 燃料化学学报,2005,33(4):509−512. doi: 10.3969/j.issn.0253-2409.2005.04.027

    MA Shu-qi, LI Gang, WANG Xiang-sheng, JIN Chang-zi, LIU Min, GUO Xin-wen. 1-Butylene epoxidation over various titanosilicate molecular sieves[J]. J Fuel Chem Technol,2005,33(4):509−512. doi: 10.3969/j.issn.0253-2409.2005.04.027
    [16] LIU Z F, DAVIS R J. Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR Spectroscopies[J]. J Phys Chem,1994,98(4):1253−1261. doi: 10.1021/j100055a035
    [17] WILDE N, PRECH J, PELZ M, KUBU M, CEJKA J, Glaser R. Accessibility enhancement of TS-1-based catalysts for improving the epoxidation of plant oil-derived substrates[J]. Catal Sci Technol,2016,6 (19):7280−7288. doi: 10.1039/C6CY01232A
    [18] ZUO Y, LIU M, ZHANG T, MENG C G, GUO X W, SONG C S. Enhanced catalytic performance of titanium silicalite-1 in tuning the crystal size in the range 1200−200 nm in a tetrapropylammonium bromide system[J]. ChemCatChem,2015,7(17):2660−2668. doi: 10.1002/cctc.201500440
    [19] LIN D, ZHANG Q D, QIN Z X, LI Q, FENG X, SONG Z N, CAI Z P, LIU Y B, CHEN X B, CHEN D, MINTOVA S, YANG C H. Reversing titanium oligomer formation towards high‐efficiency and green synthesis of titanium-containing molecular sieves[J]. Angew Chem Int Ed,2020,59:1−7. doi: 10.1002/anie.201914874
    [20] 陈晓晖, 蔡丽蓉, 魏可镁. 表面活性剂Tween对TS-1合成及催化性能影响的研究[J]. 燃料化学学报,2005,33(1):112−116. doi: 10.3969/j.issn.0253-2409.2005.01.022

    CHEN Xiao-hui, CAI Li-rong, WEI Ke-mei. Effect of tween on synthesis and catalytic performance of TS-1[J]. J Fuel Chem Technol,2005,33(1):112−116. doi: 10.3969/j.issn.0253-2409.2005.01.022
    [21] FAN W B, DUAN R G, YOKOI T, WU P, KUBOTA Y, TATSUMI T. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species[J]. J Am Chem Soc,2008,130 (31):10150−10164. doi: 10.1021/ja7100399
    [22] FAN W B, FAN B B, SHEN X H, LI J F, WU P, KUBOTA Y, TATSUMI T. Effect of ammonium salts on the synthesis and catalytic properties of TS-1[J]. Microporous Mesoporous Mater,2009,122 (1-3):301−308. doi: 10.1016/j.micromeso.2009.03.018
    [23] SHAKERI M, DEHGHANPOUR S B. Rational synthesis of TS-1 zeolite to direct both particle size and framework Ti in favor of enhanced catalytic performance[J]. Microporous Mesoporous Mater,2020,298:110066. doi: 10.1016/j.micromeso.2020.110066
    [24] SHEN X H, WANG J J, LIU M Q, LI M Z, LU J J. Preparation of the hierarchical Ti-Rich TS-1 via TritonX-100-Assisted synthetic strategy for the direct oxidation of benzene[J]. Catal Lett,2019,149(9):2586−2596. doi: 10.1007/s10562-019-02735-5
    [25] TREACY M M J. Collection of simulated xrd powder patterns for zeolites[M]. 5th ed. Amsterdam: Elsevier Science, 2007, 276.
    [26] BURKETT S L, DAVIS M E. Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR[J]. J Phys Chem,1994,98(17):4647−4653. doi: 10.1021/j100068a027
    [27] BURKETT S L, DAVIS M E. Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. synthesis of TPA/Si-ZSM-5[J]. Chem Mater,1995,7(5):920−928. doi: 10.1021/cm00053a017
    [28] THANGARAJ A, KUMAR R, MIRAJKAR S P, RATNASAMY P. Catalytic properties of crystalline titanium silicalites i. synthesis and characterization of titanium-rich zeolites with MFI structure[J]. J Catal,1991,130:1−8. doi: 10.1016/0021-9517(91)90086-J
    [29] LI C, XIONG G, LIU J K, YING P L, XIN Q, FENG Z C. Identifying framework titanium in TS-1 zeolite by UV resonance raman spectroscopy[J]. J Phys Chem B,2001,105(15):2993−2997. doi: 10.1021/jp0042359
    [30] SHAKERI M, DEHGHANPOUR S B. Preparation of efficient TS-1 with small particle size and enhanced framework Ti[J]. Chemistryselect,2019,4(16):4771−4774. doi: 10.1002/slct.201900457
    [31] LI C, XIONG G, XIN Q, LIU J K, YING P L, FENG Z C, LI J, YANG W B, WANG Y Z, WANG G R, LIU X Y, LIN M, WANG X Q, MIN E Z. UV resonance raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite[J]. Angew Chem Int Ed,1999,38 (15):2220−2221. doi: 10.1002/(SICI)1521-3773(19990802)38:15<2220::AID-ANIE2220>3.0.CO;2-G
    [32] ASTORINO E, PERI J B, WILLEY R J, BUSCA G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1[J]. J Catal,1995,157 (2):482−500. doi: 10.1006/jcat.1995.1313
    [33] SU J, XIONG G, ZHOU J C, LIU W H, ZHOU D H, WANG G R, WANG X S, GUO H C,[J]. J Catal, 2012, 288, 1−7.
    [34] LANGERAME F, SALVI A M, SILLETTI M, MORETTI G. XPS characterization of a synthetic Ti-containing MFI zeolite framework: the titanosilicalites, TS-1[J]. Surf Interface Anal,2010,40(3-4):695−699.
    [35] 夏清华, 王公慰, 应慕良, 曹国英, 郑禄彬. 钛-硅沸石的结构表征及其催化性能[J]. 催化学报,1994,15(2):109−114.

    XIA Qing-hua, WANG Gong-wei, CAO Guo-ying, ZHENG Lu-bin. Structure characterization and catalytic performance of titanium silicalite zeolites[J]. Chinese J Catal,1994,15(2):109−114.
    [36] XU W J, ZHANG T J, Bai R S, ZHANG P, YU J H. A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species[J]. J Mater Chem A,2020,8(19):9677−9683. doi: 10.1039/C9TA13851J
    [37] BAI R S, NAVARRO M T, Song Y, ZHANG T J, ZOU Y C, FENG Z C, ZHANG P, CORMA A, YU J H. Titanosilicate zeolite precursors for highly efficient oxidation reactions[J]. Chemical Science,2020,11(45):12341−12349. doi: 10.1039/D0SC04603E
    [38] 高焕新, 卢文奎, 陈庆龄. 钛硅分子筛TS-1催化氯丙烯环氧化反应动力学研究[J]. 催化学报,2002,23(1):3−8. doi: 10.3321/j.issn:0253-9837.2002.01.002

    GAO Huan-xin, LU Wen-kui, CHEN Qing-ling. Reaction kinetics of epoxidation of allyl chloride with hydrogen peroxide catalyzed by titanium Silicalite-1[J]. Chinese J Catal,2002,23(1):3−8. doi: 10.3321/j.issn:0253-9837.2002.01.002
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-25

目录

    /

    返回文章
    返回