留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效析氧反应催化剂Fe-MIL-101的制备及性能研究

彭学刚 李晓东 崔丽萍 高志华 黄伟 左志军

彭学刚, 李晓东, 崔丽萍, 高志华, 黄伟, 左志军. 高效析氧反应催化剂Fe-MIL-101的制备及性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60072-5
引用本文: 彭学刚, 李晓东, 崔丽萍, 高志华, 黄伟, 左志军. 高效析氧反应催化剂Fe-MIL-101的制备及性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60072-5
PENG Xue-gang, LI Xiao-dong, CUI Li-ping, GAO Zhi-hua, HUANG Wei, ZUO Zhi-jun. Preparation and investigation of Fe-MIL-101 as efficient catalysts for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60072-5
Citation: PENG Xue-gang, LI Xiao-dong, CUI Li-ping, GAO Zhi-hua, HUANG Wei, ZUO Zhi-jun. Preparation and investigation of Fe-MIL-101 as efficient catalysts for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60072-5

高效析氧反应催化剂Fe-MIL-101的制备及性能研究

doi: 10.1016/S1872-5813(21)60072-5
基金项目: 国家自然科学基金面上项目(21776197, 22078214, 21776195),山西省重点研发计划(国际科技合作,201903D421074),山西省高等学校科技成果转化培育项目(2020CG012)和山西省科技重大专项(20191102003)项目资助
详细信息
    通讯作者:

    E-mail: zuozhijun@tyut.edu.cn

  • 中图分类号: TQ426

Preparation and investigation of Fe-MIL-101 as efficient catalysts for oxygen evolution reaction

Funds: The project was supported by the National Natural Science Foundation of China (21776197, 22078214, 21776195), Key R&D program of Shanxi Province (International Cooperation, 201903D421074), Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (2020CG012) and the Scientific and Technological Key Project of Shanxi Province (20191102003)
  • 摘要: 近年来,金属有机骨架(MOFs)逐渐用于析氧反应(OER)领域。在以往研究中,MOFs通常作为前驱体在高温下热解制备金属氧化物/多孔碳复合材料以提高OER性能。虽然金属氧化物/多孔碳复合材料显示出较高的催化活性,但是它们需要复杂的制备工艺和高温条件。因此,寻找一种不经过热解处理可以直接用作OER的高效能MOFs催化剂是有意义的。结果表明,以Co-ZIF-67/NF、Ni-MOF-74/NF和Fe-MIL-101/NF为OER的催化剂时,在1 mol/L KOH溶液中电流密度达到10 mA/cm2所需过电位分别为377、383和272 mV。Fe-MIL-101/NF的电荷转移电阻(Rct)为1.53 Ω,小于Co-ZIF-67/NF(32.40 Ω)和Ni-MOF-74/NF(43.78 Ω)。因此,随着催化剂的Rct逐渐增大,OER过程中的电荷传递能力降低,即快速的电荷转移速率是Fe-MIL-101/NF具有优异OER活性的主要原因。另外,不经热解处理的Fe-MIL-101/NF(272 mV)的OER活性明显高于商业RuO2/NF(302 mV),说明具有快速电荷转移速率的MOFs可以不经煅烧作为OER的高效催化剂。
  • 图  1  Co-ZIF-67、Ni-MOF-74和Fe-MIL-101的XRD谱图

    Figure  1  XRD patterns of Co-ZIF-67, Ni-MOF-74 and Fe-MIL-101

    图  2  Co-ZIF-67、Ni-MOF-74和Fe-MIL-101的FT-IR谱图

    Figure  2  FT-IR spectra of Co-ZIF-67, Ni-MOF-74 and Fe-MIL-101

    图  3  Co-ZIF-67 (a)、Ni-MOF-74 (b)和Fe-MIL-101 (c)的SEM照片

    Figure  3  SEM images of Co-ZIF-67 (a), Ni-MOF-74 (b) and Fe-MIL-101 (c)

    图  4  Co-ZIF-67 ((a), (b))、Ni-MOF-74 ((c), (d))和Fe-MIL-101 ((e), (f))的N2吸附-脱附等温线和孔径分布

    Figure  4  N2 adsorption and desorption isotherm and pore size distribution of Co-ZIF-67 ((a), (b)), Ni-MOF-74 ((c), (d)) and Fe-MIL-101 ((e), (f))

    图  5  Co-ZIF-67的Co 2p (a)、Ni-MOF-74的Ni 2p (b)和Fe-MIL-101的Fe 2p (c) XPS谱图

    Figure  5  XPS of Co 2p of Co-ZIF-67 (a), Ni 2p of Ni-MOF-74 (b) and Fe 2p of Fe-MIL-101 (c)

    图  6  Co-ZIF-67/NF、Ni-MOF-74/NF、Fe-MIL-101/NF、RuO2/NF和空白泡沫镍的CV曲线

    Figure  6  CV curves of Co-ZIF-67/NF, Ni-MOF-74/NF, Fe-MIL-101/NF, RuO2/NF and blank NF

    图  7  Co-ZIF-67/NF、Ni-MOF-74/NF、Fe-MIL-101/NF、RuO2/NF和空白泡沫镍的Tafel斜率图

    Figure  7  Tafel plots diagram of Co-ZIF-67/NF, Ni-MOF-74/NF, Fe-MIL-101/NF, RuO2/NF and blank NF

    图  8  Co-ZIF-67/NF、Ni-MOF-74/NF、Fe-MIL-101/NF、RuO2/NF和空白泡沫镍的扫描速率-电流密度线性图

    Figure  8  Linear diagram of scanning rate-current density of Co-ZIF-67/NF, Ni-MOF-74/NF, Fe-MIL-101/NF, RuO2/NF and blank NF

    图  9  Co-ZIF-67/NF、Ni-MOF-74/NF、Fe-MIL-101/NF、RuO2/NF和空白泡沫镍的Nyquist谱图

    Figure  9  Nyquist diagram of Co-ZIF-67/NF, Ni-MOF-74/NF, Fe-MIL-101/NF, RuO2/NF and blank NF

    图  10  Fe-MIL-101/NF在过电位恒为272 mV时的计时电流曲线

    Figure  10  Chronoamperometric curves of the Fe-MIL-101/NF with constant overpotential of 272 mV

  • [1] EL-EMAM R S, OZCAN H, DINCER I. Comparative cost evaluation of nuclear hydrogen production methods with the Hydrogen Economy Evaluation Program (HEEP)[J]. Int J Hydrogen Energy,2015,40(34):11168−11177. doi: 10.1016/j.ijhydene.2014.12.098
    [2] 徐祥福, 陈佳, 赖国霞, 李天乐, 许诗圳, 陈星源, 朱伟玲. 单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究[J]. 燃料化学学报,2020,48(3):321−327. doi: 10.3969/j.issn.0253-2409.2020.03.008

    XU Xiang-fu, CHEN Jia, LA Guo-xia, LI Tian-le, XU Shi-zhen, CHEN Xing-yuan, ZHU Wei-ling. Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress[J]. J Fuel Chem Technol,2020,48(3):321−327. doi: 10.3969/j.issn.0253-2409.2020.03.008
    [3] 梁珂明, 姜彬, 黄焱, 鲁萌萌, 王秋静. 碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究[J]. 燃料化学学报,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014

    LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. J Fuel Chem Technol,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014
    [4] SARKAR S, PETER S C. An overview on Pd-based electrocatalysts for the hydrogen evolution reaction[J]. Inorg Chem Front,2018,5(9):2060−2080. doi: 10.1039/C8QI00042E
    [5] STOJIC D L, MARCETA M P, SOVILJ S P, MILJANIC S S. Hydrogen generation from water electrolysis-possibilities of energy saving[J]. J Power Sources,2003,118(1/2):315−319. doi: 10.1016/S0378-7753(03)00077-6
    [6] ROY A, WATSON S, INFIELD D. Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers[J]. Int J Hydrogen Energy,2006,31(14):1964−1979. doi: 10.1016/j.ijhydene.2006.01.018
    [7] SUEN NT, HUNG S F, QUAN Q, ZHANG N, XU Y J, CHEN H M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chem Soc Rev,2017,46(2):337−365. doi: 10.1039/C6CS00328A
    [8] LING X T, DU F, ZHANG Y T, SHEN Y, LI T, ALSAEDI A, HAYAT T, ZHOU Y, ZHOU Z G. Preparation of an Fe2Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction[J]. RSC Adv,2019,9(57):33558−33562. doi: 10.1039/C9RA07499F
    [9] 彭立山, 魏子栋. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展,2018,30(1):14−28. doi: 10.7536/PC170912

    PENG Li-shan, WEI Zi-dong. Design and product engineering of high-performance electrode catalytic materials for water electrolysis[J]. Prog Chem,2018,30(1):14−28. doi: 10.7536/PC170912
    [10] XU Y, KRAFT M, XU R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting[J]. Chem Soc Rev,2016,45(11):3039−3052. doi: 10.1039/C5CS00729A
    [11] 巩睿, 周丽梅, 马娜, 胡钰, 陈建荣, 胡鑫, 代伟. 金属有机骨架材料MOF-5吸附苯并噻吩性能[J]. 燃料化学学报,2013,41(5):607−612. doi: 10.3969/j.issn.0253-2409.2013.05.012

    GONG Rui, ZHOU Li-mei, MA Na, HU Yu, CHEN Jian-rong, HU Xin, DA Wei. Adsorptive performance of benzothiophene using metal organic framework material MOF-5[J]. J Fuel Chem Technol,2013,41(5):607−612. doi: 10.3969/j.issn.0253-2409.2013.05.012
    [12] ZHANG X P, SUN W D, DU H T, KONG R M, QU F L. A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes[J]. Inorg Chem Front,2018,5(2):344−347. doi: 10.1039/C7QI00630F
    [13] ZHOU J, DOU Y B, ZHOU A W, GUO R M, ZHAO M J, LI J R. MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction[J]. Adv Energy Mater,2017,7(12):1602643. doi: 10.1002/aenm.201602643
    [14] ZHAI M K, WANG F, DU H B. Transition-metal phosphide-carbon nanosheet composites derived from two-dimensional metal-organic frameworks for highly efficient electrocatalytic water-splitting[J]. ACS Appl Mater Interfaces,2017,9(46):40171−40179. doi: 10.1021/acsami.7b10680
    [15] LI F L, SHAO Q, HUANG X Q, LANG J P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angew Chem Int Ed,2018,57(7):1888−1892. doi: 10.1002/anie.201711376
    [16] RUI K, ZHAO G Q, CHEN Y P, LIN Y, ZHOU Q, CHEN J Y, ZHU J X, SUN W P, HUANG W, DOU S X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis[J]. Adv Funct Mater,2018,28(26):1801554. doi: 10.1002/adfm.201801554
    [17] XING J L, GUO K L, ZOU Z H, CAI M M, DU J, XU C L. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation[J]. Chem Commun,2018,54(51):7046−7049. doi: 10.1039/C8CC03112F
    [18] 杨美玉, 石倩玉, 于雅娜, 王小萌, 赵蔚然, 魏磊. ZIF-67衍生纳米磷化钴催化硼氢化钠水解制氢[J]. 中国有色金属学报,2020,30(8):1982−1989. doi: 10.11817/j.ysxb.1004.0609.2020-37619

    YANG Mei-yu, SHI Qian-yu, YU Ya-na, WANG Xiao-meng, ZHAO Wei-ran, WEI Lei. ZIF-67 derived cobalt phosphides nanocatalysts for catalytic hydrolysis of sodium borohydride to generate hydrogen[J]. Chin J Nonferrous Met,2020,30(8):1982−1989. doi: 10.11817/j.ysxb.1004.0609.2020-37619
    [19] CHEN S R, XUE M, LI Y Q, PAN Y, ZHU L K, QIU S L. Rational design and synthesis of NixCo3−xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J]. J Mater Chem A,2015,3(40):20145−20152. doi: 10.1039/C5TA02557E
    [20] GENG N N, CHEN W, XU H, DING M M, LIN T, WU Q S, ZHANG L. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism[J]. Ultrason Sonochem,2021,72:105411. doi: 10.1016/j.ultsonch.2020.105411
    [21] JAFARINASAB M, AKBARI A, OMIDKHAH M, SHAKERI M. An efficient Co-based metal-organic framework nanocrystal (Co-ZIF-67) for adsorptive desulfurization of dibenzothiophene: impact of the preparation approach on structure tuning[J]. Energy Fuels,2020,34(10):12779−12791. doi: 10.1021/acs.energyfuels.0c01888
    [22] LI B W, ZENG H C. Synthetic chemistry and multifunctionality of an amorphous Ni-MOF-74 shell on a Ni/SiO2 hollow catalyst for efficient tandem reactions[J]. Chem Mater,2019,31(14):5320−5330. doi: 10.1021/acs.chemmater.9b02070
    [23] XIE Q Y, LI Y, LV Z L, ZHOU H, YANG X J, CHEN J, GUO H. Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101[J]. Sci Rep-UK,2017,7(1):3361. doi: 10.1038/s41598-017-03312-9
    [24] 杨通, 何小波, 银凤翔. M-MOF-74(M=Ni, Co, Zn)的制备及其电化学催化合成氨性能[J]. 化工学报,2020,71(6):2857−2870.

    YANG Tong, HE Xiao-bo, YIN Feng-xiang. Preparation of M-MOF-74 (M = Ni, Co, Zn) and its performance in electrocatalytic synthesis of ammonia[J]. CIESC J,2020,71(6):2857−2870.
    [25] WANG L X, JIAO Y, YAO S Y, LI P Y, WANG R, CHEN G. MOF-derived NiO/Ni architecture encapsulated into N-doped carbon nanotubes for advanced asymmetric supercapacitors[J]. Inorg Chem Front,2019,6(6):1553−1560. doi: 10.1039/C9QI00274J
    [26] YANG Z W, XU X Q, LIANG X X, LEI C, WEI Y L, HE P Q, MA H C, LEI Z Q. MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Appl Catal B: Environ,2016,198:112−123. doi: 10.1016/j.apcatb.2016.05.041
    [27] FANG W H, WANG J, HU Y, CUI X Q, ZHU R F, ZHANG Y H, YUE C C, DANG J Q, CUI W, ZHAO H. Metal-organic framework derived Fe-Co-CN/reduced graphene oxide for efficient HER and OER[J]. Electrochim Acta,2021,365:137384. doi: 10.1016/j.electacta.2020.137384
    [28] ZOU H H, YUAN C Z, ZOU H Y, CHEANG TY, ZHAO S J, QAZI U Y, ZHONG S L, WANG L, XU A W. Bimetallic phosphide hollow nanocubes derived from a prussian-blue-analog used as high-performance catalysts for the oxygen evolution reaction[J]. Catal Sci Technol,2017,7(7):1549−1555. doi: 10.1039/C7CY00035A
    [29] 刘璐, 伍含月, 李静, 佘岚. 铁镍合金催化剂的结构调控及对电化学析氧反应的催化性能[J]. 高等学校化学学报,2020,41(5):1083−1090.

    LIU Lu, WU Han-yue, LI Jin, SHE Lan. Tuning microstructures of iron-nickel alloy catalysts for efficient oxygen evolution reaction[J]. Chem J Chin Univ,2020,41(5):1083−1090.
  • 加载中
图(10)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  14
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-03-08
  • 网络出版日期:  2021-03-26

目录

    /

    返回文章
    返回