留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农业废弃物水洗前后热解特性的变化

胡睿 万诗琪 毛峰 王杰

胡睿, 万诗琪, 毛峰, 王杰. 农业废弃物水洗前后热解特性的变化[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60073-7
引用本文: 胡睿, 万诗琪, 毛峰, 王杰. 农业废弃物水洗前后热解特性的变化[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60073-7
HU Rui, WAN Shi-qi, Mao Feng, WANG Jie. Changes in pyrolysis characteristics of agricultural residues before and after water washing[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60073-7
Citation: HU Rui, WAN Shi-qi, Mao Feng, WANG Jie. Changes in pyrolysis characteristics of agricultural residues before and after water washing[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60073-7

农业废弃物水洗前后热解特性的变化

doi: 10.1016/S1872-5813(21)60073-7
详细信息
    通讯作者:

    Tel./fax: +86 21 64252462,E-mail: address: jwang2006@ecust.edu.cn (J. Wang)

  • 中图分类号: TK6

Changes in pyrolysis characteristics of agricultural residues before and after water washing

  • 摘要: 首先对花生秸秆、高粱秸秆和芦苇三种农业废弃物进行了水洗预处理,再利用固定床反应器进行了热解实验,借此考察水洗前后碱金属和碱土金属(AAEMs)和纤维组成的变化及其对农业废弃物热解特性的影响。研究发现,水洗可脱除52.7~92.6%的钾和一半左右的中性溶解物(NDS)。AAEMs和NDS的脱除对热解农业废弃物热解产生综合影响,含AAEMs和NDS较多的花生秸秆影响尤为明显。AAEMs的脱除遏制脱羧基、脱羰基、脱氢及挥发分二次缩聚反应,而NDS的脱除直接影响气体和液体的产率和组成。总体上,对于所有三种农业废弃物,水洗后均有利于提高生物油和生物炭产率,但气体产率降低;水洗后生物油中含氧化合物增多,其中糖类和呋喃类增幅最大,而烃类、含氮化合物减少。水洗后,花生秸秆的CO2、CO和CH4产率均明显降低,而生物油中长链脂肪酸的占比增大。
  • 图  1  水洗前后农业废弃物的热重分析

    Figure  1.  The TGA/DTG analyses of agricultural residues before and after water washing.

    图  2  水洗前后农业废弃物700 ℃下主要热解气体释放速率

    Figure  2.  Release rates of main pyrolysis gases from agricultural residues at 700 ℃ before and after washing

    图  3  水洗前后农业废弃物700 ℃下热解生物油中各类化合物GC-MS分析相对峰面积

    Figure  3.  The GC-MS relative peak areas (%) of different classes of compounds in the bio-oils produced from the pyrolysis of three agricultural residues before and after washing

    表  1  水洗前后农业废弃物的工业分析和元素分析

    Table  1.   The proximate analysis and ultimate analysis of agricultural residues before and after water washing

    Proximate analysis (%, dry basis)Ultimate analysis (%, dry basis)
    VolatileAshFixed carbonaCHNSOa
    PS66.3917.0416.5746.516.792.770.0643.87
    W-PS72.8715.5011.6349.466.922.340.0041.28
    SS72.209.1218.6848.106.790.590.0044.52
    W-SS76.777.0616.1748.106.380.540.0044.98
    RD73.037.9719.0047.646.630.830.0044.90
    W-RD77.516.5415.9548.946.440.660.0043.96
    a: by difference
    下载: 导出CSV

    表  2  水洗前后农业废弃物中的无机矿物质含量

    Table  2.   The contents of AAEMs in agricultural residues before and after water washing

    AAEMs (%, dry basis.)
    NaKCaMg
    PS0.081.791.511.05
    W-PS0.030.701.600.81
    SS0.031.100.340.19
    W-SS0.020.630.320.16
    RD0.020.270.230.06
    W-RD0.010.020.160.02
    下载: 导出CSV

    表  3  水洗前后农业废弃物的纤维组成

    Table  3.   The contents of fibrous components in agricultural residues before and after water washing

    Fibrous components (%, dry basis.a)
    NDSHemicelluloseCelluloseLigninSilicate
    PS47.414.326.87.63.9
    W-PS29.4
    (21.0)
    21.3
    (15.2)
    34.7
    (24.8)
    11.1
    (7.9)
    3.5
    (2.4)
    SS16.829.923.624.84.9
    W-SS9.5
    (7.9)
    30.7
    (25.5)
    28.1
    (23.4)
    26.7
    (22.2)
    5.0
    (4.2)
    RD15.624.342.112.55.5
    W-RD8.9
    (8.0)
    27.6
    (24.7)
    44.5
    (39.9)
    13.9
    (12.4)
    5.1
    (4.6)
    a: data in parenthesis are represented based on the mass of dried raw biomass
    下载: 导出CSV

    表  4  水洗前后农业废弃物热解总产物分布及各气体产率(%, 干燥基生物质)

    Table  4.   Distributions of overall products and yields of individual gases produced by pyrolysis of three agricultural residues before and after water washing (%, dry biomass basis)

    ProductsPSW-PSSSW-SSRDW-RD
    Overall productsgas22.917.117.914.815.912.3
    water16.217.524.226.121.623.9
    bio-oil24.329.527.632.031.537.2
    biochar35.534.729.326.329.325.3
    total98.998.899.099.298.398.7
    GasesCO214.5010.9211.158.799.196.99
    CO6.224.435.154.584.983.94
    H20.460.410.330.320.310.24
    CH41.120.750.920.801.080.93
    C2−C30.640.580.410.310.380.26
    下载: 导出CSV

    表  5  水洗前后农业废弃物热解生物油中部分主要化合物的GC-MS分析相对峰面积(%)

    Table  5.   The GC-MS relative peak areas (RPAs) of some main compounds in pyrolysis bio-oils of three agricultural residues before and after washing (%)

    Group/CompoundsMolecular formulaPSW-PSSSW-SSRDW-RD
    Fatty acids
    Hexadecenoic acidC16H30O21.8
    Hexadecanoic acidC16H32O26.71.00.5
    Methyl hexadecanoateC17H34O21.10.40.1
    Oleic acidC18H34O20.91.2
    Octadecanoic acidC18H36O20.40.4
    Sugars
    1,4,3,6-dianhydro-α-d-glucopyranoseC6H8O40.72.81.31.30.81.1
    1,6-anhydro-β-d-glucopyranosC6H10O50.44.71.25.1
    D-alloseC6H12O63.30.11.26.1
    Cyclic hydrocarbons
    1,3,5-cycloheptatrieneC7H83.10.5
    1,3,5,7-cyclooctatetraeneC8H85.00.9
    Trimethylbicyclo heptaneC10H181.42.0
    EthylcyclododecaneC14H280.90.1
    Nitrogenous compounds
    Dihydro-trimethyl- oxazoleC6H11NO13.9
    1-pyrrolidinylacetic acidC6H11NO211.8
    (Z)-9-octadecenoamideC18H35NO0.90.40.70.8
    (Z)-13-docosenamideC22H43NO0.90.40.70.7
    下载: 导出CSV

    表  6  水洗前后农业废弃物热解生物油中部分化合物的产率(%, 干燥基生物质)

    Table  6.   The yields of some main compounds in the bio-oils produced from three agricultural residues before and after washing (%, dry biomass basis)

    CompoundsPSW-PSSSW-SSRDW-RD
    Acetic acid1.101.774.073.864.193.28
    Hexadecanoic acid0.000.350.020.000.000.01
    Octadecanoic acid0.000.070.040.000.000.00
    Oleic acid0.000.150.470.000.000.00
    Hydroxyacetone0.130.380.600.550.620.45
    Furfural0.110.290.521.360.830.79
    2-Furanmethanol0.080.340.330.930.410.78
    Guaiacol0.000.100.220.260.160.31
    Phenol0.100.200.290.340.130.14
    Cresols0.100.350.210.310.130.30
    Xylenol0.070.140.160.290.140.14
    Benzene0.090.060.000.000.000.00
    Toluene0.130.130.100.040.070.24
    Xylene0.000.000.020.000.000.00
    下载: 导出CSV
  • [1] LORENZETTI C, CONTI R, FABBRI D, YANIK J. A comparative study on the catalytic effect of H-ZS M5 on upgrading of pyrolysis vapors derived from lignocellulosic and proteinaceous biomass[J]. Fuel,2016,166:446−452. doi: 10.1016/j.fuel.2015.10.051
    [2] ARNI S A. Comparison of slow and fast pyrolysis for converting biomass into fuel[J]. Renewable Energy,2017,124:197−201.
    [3] TAG, TOPTAS A, DUMAN, GOZDE. Effects of feedstock type and pyrolysis temperature on potential applications of biochar[J]. J Anal Appl Pyrolysis,2016,120:200−206. doi: 10.1016/j.jaap.2016.05.006
    [4] ZHANG X, LEI H, ZHU L, QIAN M, ZHU X, WU J, CHEN S. Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions[J]. Applied Energy,2016,173:418−430. doi: 10.1016/j.apenergy.2016.04.071
    [5] LIU S, XIE Q, ZHANG B, CHENG Y, RUAN R. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst[J]. Bioresour Technol,2016,204:164−170. doi: 10.1016/j.biortech.2015.12.085
    [6] KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renew Sust Energ Rev,2016,57(28):1126−1140.
    [7] MEHMOOD M, YE G, LUO H, LIU C, MALIK S, AFZAL I. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy[J]. Bioresour Technol,2017,228:18−24. doi: 10.1016/j.biortech.2016.12.096
    [8] BISWAS B, PANDEY N, BISHT Y, SINGH R, KUMAR J, BHASKAR T. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk[J]. Bioresour Technol,2017,57−63.
    [9] 侯宝鑫, 张守玉, 吴巧美. 生物质热解制备木醋液及其性质研究[J]. 燃料化学学报,2015,43(12):1439−1445.

    HOU Bao-xin, ZHANG Shou-yu, WU Qiao-mei. Wood vinegar and its properties from pyrolysis of biomass[J]. J Fuel Chem Technol,2015,43(12):1439−1445.
    [10] 郑楠, 史纪龙, 王杰. 生物质铁盐催化加氢热解产生生物油与气态烃的研究[J]. 燃料化学学报,2020,48(4):414−423.

    ZHENG Nan, SHI Ji-long, WANG Jie. Iron salts-catalyzed biomass hydropyrolysis for production of bio-oil and gaseous hydrocarbons[J]. J Fuel Chem Technol,2020,48(4):414−423.
    [11] 王贤华, 陈汉平, 王静, 辛芬, 杨海平. 无机矿物质盐对生物质热解特性的影响[J]. 燃料化学学报,2008,36(6):679−683. doi: 10.3969/j.issn.0253-2409.2008.06.007

    WANG Xian-hua, CHEN Han-ping, WANG Jing, XIN Fen, YANG Haiping. Influences of mineral matters on biomass pyrolysis characteristics[J]. J Fuel Chem Technol,2008,36(6):679−683. doi: 10.3969/j.issn.0253-2409.2008.06.007
    [12] CEN K, ZHANG J, MA Z, CHEN D, ZHOU J, MA H. Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aqueous phase bio-oil[J]. Bioresour Technol,2019,278:26−33. doi: 10.1016/j.biortech.2019.01.048
    [13] CHANDLER D S, RESENDE F L P. Effects of warm water washing on the fast pyrolysis of & IT; Arundo Donax & IT[J]. Biomass Bioenergy,2018,2018:113, 65−74.
    [14] CAO B, WANG S, HU Y, ABOMOHRA E F, QIAN L, HE Z. Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds[J]. Renew Energ,2019,138:29−38. doi: 10.1016/j.renene.2019.01.084
    [15] CHEN D Y, WANG Y, LIU Y X, CEN K H, XIAO B. Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS[J]. Fuel,2019,252:1−9. doi: 10.1016/j.fuel.2019.04.086
    [16] WANG C Y, ZHENG N, WAN S Q, WANG J. Assessment of the modes of occurrence of trace elements in agricultural crop residues and their enrichments and bioavailability in bio-chars[J]. Biomass Convers Biorefin, 2020, 10.1007/s13399-019-00597-w.
    [17] MOURANT D, WANG Z, HE M, XIAO S M, GARCIA P M, LING K, LI C Z. Mallee wood fast pyrolysis, Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil[J]. Fuel,2011,90(9):2915−2922.
    [18] NOWAKOWSKI D J, JONES J M, BRYDSON R, ROSS A B. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice[J]. Fuel,2007,86(15):2389−2402. doi: 10.1016/j.fuel.2007.01.026
    [19] RAVEENDRAN K, GANESH A, KHILAR K C. Influence of mineral matter on biomass pyrolysis characteristics[J]. Fuel,1995,74(12):1812−1822. doi: 10.1016/0016-2361(95)80013-8
    [20] GUREVICH M L I, BONELLI P R, CUKIERMAN A L. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells[J]. Renew Energ,2017,114:697−707. doi: 10.1016/j.renene.2017.07.065
    [21] 王树荣, 廖艳芳, 文丽华. 钾盐催化纤维素快速热裂解机理研究[J]. 燃料化学学报,2004,32(6):694−698. doi: 10.3969/j.issn.0253-2409.2004.06.011

    WANG Shu-rong, LIAO Yan-fang, WEN Li-hua. Catalysis mechanism of potassium salt during rapid pyrolysis of cellulose[J]. J Fuel Chem Technol,2004,32(6):694−698. doi: 10.3969/j.issn.0253-2409.2004.06.011
    [22] 廖艳芳, 王树荣, 骆仲泱. 氯化钙催化纤维素热裂解动力学研究[J]. 燃料化学学报,2005,33(6):692−697. doi: 10.3969/j.issn.0253-2409.2005.06.010

    LIAO Yan-fang, Wang Shu-rong, LUO Zhong-yang. Kinetics analysis of cellulose pyrolysis catalyzed by calcium chloride[J]. J Fuel Chem Technol,2005,33(6):692−697. doi: 10.3969/j.issn.0253-2409.2005.06.010
    [23] WAN S Q, ZHENG N, ZHANG J, WANG J. Role of neutral extractives and inherent active minerals in pyrolysis of agricultural crop residues and bio-oil formations[J]. Biomass Bioenergy,2019,122:53−62. doi: 10.1016/j.biombioe.2019.01.010
    [24] SHI L, YU S, WANG F C, WANG J. Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metals[J]. Fuel,2012,96:586−594. doi: 10.1016/j.fuel.2012.01.013
    [25] VAMVUKA D, TROULINOS S, KASTANAKI E. The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials[J]. Fuel,2006,85(12/13):1763−1771.
    [26] MOHAN D, CHARLES U P J, STEELE P H. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review[J]. Energy Fuels,2006,20(3):848−889. doi: 10.1021/ef0502397
    [27] MELZER M, BLIN J, BENSAKHRIA A, VALETTE J, BROUST F. Pyrolysis of extractive rich agroindustrial residues[J]. J Anal Appl Pyrolysis,2013,104:448−460. doi: 10.1016/j.jaap.2013.05.027
    [28] YU J, PATERSON N, BLAMEY J, MILLAN M. Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass[J]. Fuel,2017,191:140−149. doi: 10.1016/j.fuel.2016.11.057
    [29] SHI X H, WANG J. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components[J]. Bioresour Technol,2014,170:262−269. doi: 10.1016/j.biortech.2014.07.110
    [30] PASANGULAPATI V, RAMACHANDRIYA K D, KUMAR A, WILKINS M R, JONES C L, HUHNKE R L. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass[J]. Bioresour Technol,2012,114:663−669. doi: 10.1016/j.biortech.2012.03.036
    [31] FAHMI R, BRIDGWATER A V, DARVELL L I, JONES J M, YATES N, THAIN S, DONNISON I S. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow[J]. Fuel,2007,86(10–11):1560−1569.
    [32] DI BLASI C, GALGANO A, BRANCA C. Influences of the Chemical State of Alkaline Compounds and the Nature of Alkali Metal on Wood Pyrolysis[J]. Ind Eng Chem Res,2009,48(7):3359−3369. doi: 10.1021/ie801468y
    [33] STEFANIDIS S D, KALOGIANNIS K G, ILIOPOULOU E F, MICHAILOF C M, PIAVACHI P A, LAPPAS A A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin[J]. J Anal Appl Pyrolysis,2014,105:143−150. doi: 10.1016/j.jaap.2013.10.013
    [34] WANG S, GUO X, WANG K, LUO Z. Influence of the interaction of components on the pyrolysis behavior of biomass[J]. J Anal Appl Pyrolysis,2011,91(1):183−189. doi: 10.1016/j.jaap.2011.02.006
    [35] KYOTANI T, HAYASHI S, TOMITA A. Study of calcium catalysis on carbon gasification with molecular oxygen-18[J]. Energy Fuels,1991,5(5):565−569.
    [36] YANG H, YAN R, CHEN H, DONG H L, ZHENG C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis[J]. Fuel,2007,86(12-13):1781−1788. doi: 10.1016/j.fuel.2006.12.013
    [37] WANG Z Y, CAO J Q, WANG J. Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor[J]. J Anal Appl Pyrolysis,2009,84(2):179−184. doi: 10.1016/j.jaap.2009.02.001
    [38] YILDIZ, GÜRAY, RONSSE F, VENDERBOSCH R. Effect of biomass ash in catalytic fast pyrolysis of pine wood[J]. Appl Catal B,2015,168:203−211.
    [39] 李帅丹, 陈雪莉, 刘爱彬. 固定床中纤维素热解及其焦油裂解机理研究[J]. 燃料化学学报,2014,42(4):414−419.

    LI Shuai-dan, CHEN Xue-li, LIU Ai-bin. Mechanism of cellulose pyrolysis and tar decomposition in a fixed bed reactor[J]. J Fuel Chem Technol,2014,42(4):414−419.
    [40] 黄金保, 吴隆琴, 童红. 半纤维素模型化合物热解机理的理论研究[J]. 燃料化学学报,2016,(8):911−920. doi: 10.3969/j.issn.0253-2409.2016.08.003

    HUANG Jin-bao, WU Long-qin, TONG Hong. Theoretical study on thermal degradation mechanism of hemicellulose model compoun[J]. J Fuel Chem Technol,2016,(8):911−920. doi: 10.3969/j.issn.0253-2409.2016.08.003
    [41] EOM I Y, KIM J Y, KIM T S, LEE S M, CHOI D, CHOI I G, CHOI J W. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass[J]. Bioresour Technol,2012,104:687−694. doi: 10.1016/j.biortech.2011.10.035
    [42] 黄金保, 刘朝, 魏顺安, 黄晓露, 李豪杰. 纤维素热解形成左旋葡聚糖机理的理论研究[J]. 燃料化学学报,2011,39(8):590−594. doi: 10.3969/j.issn.0253-2409.2011.08.006

    HUANG Jin-bao, LIU Chao, WEI Shun-an, HUANG Xiao-lu, LI Hao-jie. A theoretical study on the mechanism of levoglucosan formation in cellulose pyrolysis[J]. J Fuel Chem Technol,2011,39(8):590−594. doi: 10.3969/j.issn.0253-2409.2011.08.006
    [43] PATWARDHAN P R, SATRIO J A, BROWN R C, SHANKS B H. Product distribution from fast pyrolysis of glucose-based carbohydrates[J]. J Anal Appl Pyrolysis,2009,86(2):323−330. doi: 10.1016/j.jaap.2009.08.007
    [44] BROWN A L, HAMES B R, DAILY J W, DAYTON D C. Chemical Analysis of Solids and Pyrolytic Vapors from Wildland Trees[J]. Energy Fuels,2003,17(4):1022−1027. doi: 10.1021/ef020229v
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-04-02

目录

    /

    返回文章
    返回