留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预脱氯处理PVC残渣和平朔煤共热解的协同效应研究

张康莹 武云飞 王德超 靳立军 胡浩权

张康莹, 武云飞, 王德超, 靳立军, 胡浩权. 预脱氯处理PVC残渣和平朔煤共热解的协同效应研究[J]. 燃料化学学报(中英文), 2021, 49(8): 1086-1094. doi: 10.1016/S1872-5813(21)60074-9
引用本文: 张康莹, 武云飞, 王德超, 靳立军, 胡浩权. 预脱氯处理PVC残渣和平朔煤共热解的协同效应研究[J]. 燃料化学学报(中英文), 2021, 49(8): 1086-1094. doi: 10.1016/S1872-5813(21)60074-9
ZHANG Kang-ying, WU Yun-fei, WANG De-chao, JIN Li-jun, HU Hao-quan. Synergistic effect of co-pyrolysis of pre-dechlorination treated PVC residue and Pingshuo coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1086-1094. doi: 10.1016/S1872-5813(21)60074-9
Citation: ZHANG Kang-ying, WU Yun-fei, WANG De-chao, JIN Li-jun, HU Hao-quan. Synergistic effect of co-pyrolysis of pre-dechlorination treated PVC residue and Pingshuo coal[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1086-1094. doi: 10.1016/S1872-5813(21)60074-9

预脱氯处理PVC残渣和平朔煤共热解的协同效应研究

doi: 10.1016/S1872-5813(21)60074-9
基金项目: 国家自然科学基金(22078053)资助
详细信息
    通讯作者:

    Tel:0411-84986157,E-mail:hhu@dlut.edu.cn

  • 中图分类号: TQ530.2

Synergistic effect of co-pyrolysis of pre-dechlorination treated PVC residue and Pingshuo coal

Funds: The project was supported by National Natural Science Foundation of China (22078053)
  • 摘要: 热解是煤炭清洁高效利用的有效途径,也是处理废旧塑料高效转化的重要方式。本文针对无害化处理困难的含氯塑料,以聚氯乙烯(PVC)和平朔煤为研究对象,提出将PVC先经预热处理脱除大部分氯,然后将预处理后的PVC残渣与煤进行共热解,并利用气相色谱(GC)、模拟蒸馏、GC-MS、元素分析、红外光谱及拉曼光谱等对热解产生的气体、焦油以及半焦的组成和性质进行分析表征。结果表明,预脱氯处理后的PVC和平朔煤的共热解过程存在协同效应,共热解对半焦和焦油的形成具有明显的正协同作用,焦油产率实验值比理论计算值最大高3.35%;而对热解水和气体的形成产生负协同作用,其中,CH4产率下降最多,即出现最强的负协同效应;共热解使焦油中轻质焦油含量提高,其中,萘类物质含量显著增加,沥青减少,当预脱氯处理PVC添加量为10%时,轻质焦油含量比理论计算值提高5个百分点。此外,共热解半焦表面更为光滑,结构变得更加有序,石墨化度提高。
  • FIG. 833.  FIG. 833.

    FIG. 833.  FIG. 833.

    图  1  固定床热解反应装置示意图

    Figure  1  Schematic diagram of fixed-bed pyrolysis reactor

    图  2  PVC的TG-DTG曲线(a)及不同温度下热解产物的产率(b)

    Figure  2  TG-DTG curves (a) and product yield from pyrolysis of PVC at different temperature (b)

    图  3  PVC在250、300和350 ℃下热处理残渣的TG(a)和DTG(b)曲线

    Figure  3  TG (a) and DTG (b) curves of DPVC from 250, 300, and 350 ℃

    图  4  不同温度下PVC热解残渣的形态

    Figure  4  Morphology of residue from PVC pyrolysis at different temperatures

    图  5  平朔煤的TG-DTG曲线(a)及不同温度下热解产物的产率分布(b)

    Figure  5  TG-DTG curves (a) and pyrolysis product yield (b) of PS coal

    图  6  平朔煤与不同比例DPVC共混后的TG-DTG曲线

    Figure  6  TG-DTG curves of mixed PS coal and DPVC in different ratios

    图  7  平朔煤与不同质量比例DPVC混合物共热解产物产率(a)及协同效应(b)

    Figure  7  Effect of DPVC to PS coal mass ratio on yield (a) and synergistic effect (b) of co-pyrolysis

    图  8  不同比例DPVC添加量对共热解气体产物组成产率的影响(a)及协同效应(b)

    Figure  8  Effect of DPVC mixing ratio on gas composition yield (a) and synergistic effect (b) of co-pyrolysis

    图  9  不同比例DPVC添加量共热解焦油的模拟蒸馏结果(a)及协同作用分析(b)

    Figure  9  Simulated distillation (a) and synergy analysis (b) of co-pyrolysis tar with different DPVC content

    图  10  不同比例DPVC添加量对共热解焦油中不同物质相对含量的影响

    Figure  10  Effect of DPVC content on relative content of different compounds in tar from co-pyrolysis

    图  11  平朔煤与DPVC共热解半焦形貌(a)拉曼光谱分析(b)和红外光谱谱图(c)

    Figure  11  Co-pyrolysis char morphology (a) Raman spectrum (b) and FT-IR (c) of PS coal and DPVC

    表  1  平朔煤、PVC和350 ℃热解PVC残渣的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of PS coal, PVC and DPVC at 350 ℃

    SampleProximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNSO*Cl*
    PS coal0.9325.5339.7378.165.182.811.2012.65
    PVC0095.7338.094.7857.13
    DPVC(350 ℃)0078.1691.917.370.72
    *: by difference
    下载: 导出CSV
  • [1] SAHA G R, DAS T, HIQUE P, KALITA D, SAIKIA B K. Copyrolysis of low-grade indian coal and waste plastics: Future prospects of waste plastic as a source of fuel[J]. Energy Fuels,2018,32:2421−2431. doi: 10.1021/acs.energyfuels.7b03298
    [2] KUNWAR B, CHENG H N, CHANDRASHEKARAN S R, SHARM B K. Plastics to fuel: A review[J]. Renewable Sustainable Energy,2016,54:421−428. doi: 10.1016/j.rser.2015.10.015
    [3] WANG D, WANG D, YU J, CHEN Z, LI Y, GAO S. Role of alkali sodium on the catalytic performance of red mud during coal pyrolysis[J]. Fuel Process Technol,2019,186:81−87. doi: 10.1016/j.fuproc.2018.12.023
    [4] REN X Y, CAO J P, ZHAO X Y, YANG Z, LIU T L, FAN X, ZHAO Y P, WEI X Y. Catalytic upgrading of pyrolysis vapors from lignite over mono/bimetal-loaded mesoporous HZSM-5[J]. Fuel,2018,218:33−40. doi: 10.1016/j.fuel.2018.01.017
    [5] CAI J, WANG Y, ZHOU L, HUANG Q. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere[J]. Fuel Process Technol,2008,89:21−27. doi: 10.1016/j.fuproc.2007.06.006
    [6] 李保庆, 张碧江, 田福军, 廖洪强. 废塑料在煤-焦炉气共热解中的增油减水效应[J]. 燃料化学学报,1999,27(5):385−388.

    LI Bao-qing, ZHANG Bi-jiang, TIAN Fu-jun, LIAO Hong-qiang. Increasing oil and decreasing water in copyrolysis of coal with coke-oven gas by adding waste plastics[J]. J Fuel Chem Technol,1999,27(5):385−388.
    [7] SUGANO M, HARA M, ICHIKAWA R, SHITARA N, SAITOH Y, KAKUTA Y, HIRANO K. Inhibition of chlorinated organic compounds production by co-pyrolysis of poly (vinyl chloride) with cation exchanged coal[J]. Fuel,2015,151:164−171. doi: 10.1016/j.fuel.2015.02.036
    [8] MENG H, WANG S, CHEN L, WU Z, ZHAO J. Investigation on synergistic effects and char morphology during Co-pyrolysis of poly(vinyl chloride) blended with different rank coals from northern china[J]. Energy Fuels,2015,29(10):6645−55.
    [9] ÖZSIN G, PÜTÜN A E. A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics[J]. J Clean Prod,2018,205:1127−1138. doi: 10.1016/j.jclepro.2018.09.134
    [10] CZÉGÉNY Z, JAKAB E, BOZI J, BLAZSÓ M. Pyrolysis of wood-PVC mixtures. Formation of chloromethane from lignocellulosic materials in the presence of PVC[J]. J Anal Appl Pyrolysis,2015,113:123−132. doi: 10.1016/j.jaap.2014.11.016
    [11] YU J, SUN L, MA C, QIAO Y, YAO H. Thermal degradation of PVC: A review[J]. Waste Manag,2016,48:300−314. doi: 10.1016/j.wasman.2015.11.041
    [12] SOPHONRAT N, SANDSTRÖM L, SVANBERG R, HAN T, DVINSKIKH S, LOUSADA C M, YANG W. Ex Situ catalytic pyrolysis of a mixture of polyvinyl chloride and cellulose using calcium oxide for HCl adsorption and catalytic reforming of the pyrolysis products[J]. Ind Eng Chem Res,2019,58:13960−13970. doi: 10.1021/acs.iecr.9b02299
    [13] 胡浩权, 狄敏娜, 王明义, 靳立军, 王德超. 煤热解焦油原位催化裂解和乙烷水蒸气重整耦合过程研究[J]. 煤炭学报,2020,45(1):386−392.

    HU Hao-quan, DI Min-na, WANG Ming-yi, JING Li-jun, WANG De-chao. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. J China Coal Soc,2020,45(1):386−392.
    [14] ZHU J, JIN L, LUO Y, HU H, XIONG Y, WEI B, WANG D. Fast co-pyrolysis of a massive Naomaohu coal and cedar mixture using rapid infrared heating[J]. Energy Convers Manage,2020,205:112442. doi: 10.1016/j.enconman.2019.112442
    [15] LI J, ZHU J, HU H, JIN L, WANG D, WANG G. Co-pyrolysis of Baiyinhua lignite and pine in an infrared-heated fixed bed to improve tar yield[J]. Fuel,2020,272:117739. doi: 10.1016/j.fuel.2020.117739
    [16] CAO B, SUN Y, GUO J, WANG S, YUAN J, ESAKKIMUTHU S, UZOEJINWA B B, YUAN C, ABOMOHRA A E, QIAN L, LIU L, LI B, HE Z, WANG Q. Synergistic effects of co-pyrolysis of macroalgae and polyvinyl chloride on bio-oil/bio-char properties and transferring regularity of chlorine[J]. Fuel,2019,246:319−329. doi: 10.1016/j.fuel.2019.02.037
    [17] HAN B, WU Y L, RUI G, WEI F, ZHEN C, YANG M D. Thermal degradation kinetics of poly (vinyl chloride)[J]. Adv Mater Res,2010,901:245−249.
    [18] EPHRAIM A, MINH D P, LEBONNOIS D, PEREGRINA C, SHARROCK P, NZIHOUA A. Co-pyrolysis of wood and plastics: Influence of plastic type and content on product yield, gas composition and quality[J]. Fuel,2018,231:110−117. doi: 10.1016/j.fuel.2018.04.140
    [19] LU P, HUANG Q, BOURTSALAS A C T, CHI Y, YAN J. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride[J]. Fuel,2018,230:359−367. doi: 10.1016/j.fuel.2018.05.072
    [20] RAO C N R, GOPALAKRISHNAN K, GOVINDARAJ A. Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements[J]. Nano Today,2014,9(3):324−343. doi: 10.1016/j.nantod.2014.04.010
    [21] ÖZSIN G, PÜTÜN A E. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process[J]. Energy Convers Manage,2019,182:143−53. doi: 10.1016/j.enconman.2018.12.060
    [22] 夏子皓, 张凤霞, 胡建杭. PVC 对低阶煤成型半焦性能的影响[J]. 煤炭技术,2020,39(12):162−167.

    XIA Zi-hao, ZHANG Feng-xia, HU Jian-hang. Effect of PVC addition on properties of semi-coke briquettes of low rank coal[J]. J China Coal Technol,2020,39(12):162−167.
    [23] IBARRA J, MUÑOZ E, MOLINER R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem,1996,24(6/7):725−735. doi: 10.1016/0146-6380(96)00063-0
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  55
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-03-14
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回