留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WS2/C复合材料的制备及其电催化析氢性能研究

万磊 史春薇 余宗宝 武宏大 肖伟 耿忠兴 任铁强 杨占旭

万磊, 史春薇, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 杨占旭. WS2/C复合材料的制备及其电催化析氢性能研究[J]. 燃料化学学报(中英文), 2021, 49(9): 1362-1370. doi: 10.1016/S1872-5813(21)60078-6
引用本文: 万磊, 史春薇, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 杨占旭. WS2/C复合材料的制备及其电催化析氢性能研究[J]. 燃料化学学报(中英文), 2021, 49(9): 1362-1370. doi: 10.1016/S1872-5813(21)60078-6
WAN Lei, SHI Chun-wei, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, YANG Zhan-xu. Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1362-1370. doi: 10.1016/S1872-5813(21)60078-6
Citation: WAN Lei, SHI Chun-wei, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, YANG Zhan-xu. Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1362-1370. doi: 10.1016/S1872-5813(21)60078-6

WS2/C复合材料的制备及其电催化析氢性能研究

doi: 10.1016/S1872-5813(21)60078-6
基金项目: 国家自然科学基金(21671092),辽宁省“兴辽英才”创新领军人才项目(XLYC1802057),辽宁省-沈阳材料科学国家研究中心联合研发基金(2019010280-JH3/301)和抚顺英才计划青年拔尖人才(FSYC202007001)资助
详细信息
    通讯作者:

    Tel: 13841322030,E-mail: zhanxuy@126.com

  • 中图分类号: O646

Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance

Funds: The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Province "Xing Liao Talents" Innovation Leading Talent Project (XLYC1802057), Liaoning Province-Shenyang National Research Center for Materials Science Joint R&D Fund Project (2019010280-JH3/301) and Young Top Talents of Fushun Talent Plan (FSYC202007001)
  • 摘要: 以H2WO4和EDA为前驱体,通过机械搅拌与原位固相热解,得到WO3/C中间体,通过高温硫化得到WS2/C复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等仪器分析方法对制备的WS2/C复合材料结构和形貌等进行表征。同时对材料进行了电催化稳态极化曲线(LSV)、塔菲尔斜率(Tafel)、循环稳定性(CP)和电化学阻抗(PEIS)和电化学活性表面积(ECSA)测试,分析了催化剂的电催化性能。结果表明,当WS2/C复合材料的电流密度为10 mA/cm2时,过电位为179 mV,Tafel斜率为98 mV/dec。
  • FIG. 920.  FIG. 920.

    FIG. 920.  FIG. 920.

    图  1  WS2/C复合材料的制备流程图

    Figure  1  WS2/C composite preparation flow chart

    图  2  (a) H2WO4和H2WO4/EDA材料;(b) WO3/C材料和不同煅烧温度的WS2/C复合材料XRD谱图

    Figure  2  XRD patterns of (a) H2WO4 and H2WO4/EDA materials as well as (b) WO3/C materials and WS2/C composites at different calcination temperatures

    图  3  不同煅烧温度的WS2/C的SEM照片:(a) WS2/C-600;(b) WS2/C-700;(c) WS2/C-800

    Figure  3  SEM images of WS2/C at different calcination temperatures: (a) WS2/C-600, (b) WS2/C-700, (c) WS2/C-800

    图  4  ((a)−(c)):H2WO4材料、H2WO4/EDA和WS2/C-700复合材料的SEM照片;(d) :WS2/C-700复合材料的TEM照片;(e):WS2/C-700复合材料的高分辨率TEM照片;(f):WS2/C-700复合材料的元素EDX mapping分布

    Figure  4  ((a)−(c)) SEM images of H2WO4 materials, H2WO4/EDA and WS2/C-700 composites; (d) TEM images of WS2/C-700 composites; (e) High resolution TEM images of WS2/C-700 composites; (f) EDX mapping distribution of elements of WS2/C-700 composite

    图  5  WS2/C-700复合材料的XPS谱图:(a)总谱、(b)钨谱、(c)硫谱和(d)碳谱

    Figure  5  XPS spectra of WS2/C-700 composite material: (a) total spectrum, (b) tungsten spectrum, (c) sulfur spectrum, (d) carbon spectrum

    图  6  WS2/C-700复合材料的Raman谱图

    Figure  6  Raman spectra of WS2/C-700 composite

    图  7  不同煅烧温度下WS2/C复合材料的孔径分布(a)和氮吸附-脱附等温曲线(b)

    Figure  7  Pore size distribution diagram (a) and nitrogen adsorption isotherm diagram (b) of WS2/C composites at different calcination temperatures

    图  8  WS2/C-600、WS2/C-700和WS2/C-800复合材料的极化曲线(a)和Tafel曲线(b)

    Figure  8  Polarization curve (a) and Tafel curve (b) of WS2/C-600, WS2/C-700 and WS2/C-800 composite materials

    图  9  WS2/C-600、WS2/C-700和WS2/C-800复合材料的电化学阻抗谱

    Figure  9  Electrochemical impedance spectroscopy of WS2/C-600, WS2/C-700 and WS2/C-800 composite materials

    图  10  (a): WS2/C-600、WS2/C-700和WS2/C-800复合材料在2000圈循环伏安测试前后的极化曲线;(b): WS2/C-700复合材料在0.5 mol/L H2SO4电解液中的恒电流曲线

    Figure  10  (a): polarization curves of WS2/C-600, WS2/C-700 and WS2/C-800 composites before and after 2000 cycles of cyclic voltammetry; (b): constant current curve of WS2/C-700 composite in 0.5 M H2SO4 electrolyte

    图  11  WS2/C-600、WS2/C-700和WS2/C-800复合材料在不同扫速下的双电层电容

    Figure  11  Electric double layer capacitors of WS2/C-600, WS2/C-700 and WS2/C-800 composite materials at different scanning speeds

  • [1] LING Y, YANG Z H, ZHANG Q, ZHANG Y F, CAI W W, CHENG H S. A self-template synthesis of defect-rich WS2 as a highly efficient electrocatalyst for the hydrogen evolution reaction[J]. Chem Commun,2018,54(21):2631−2634. doi: 10.1039/C7CC08962G
    [2] REDDY K G, DEEPAK T G, ANJUSREE G S. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology[J]. Phys Chem Chem Phys,2014,16(15):6838−6858. doi: 10.1039/c3cp55448a
    [3] PARK S K, LEE S W, SUNG S J, LEE S H, LEE C H, BAE K, KIM H M, HAN Y S. Effects of TiO2: MgO-mixed overlayer on the performance of dye-sensitized solar cells[J]. J Nanosci Nanotechnol,2016,16(8):8575−8579. doi: 10.1166/jnn.2016.12494
    [4] ZHANG Y, XIAO J, LV Q, WANG S. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front Chem Sci Eng,2018,12(3):494−508. doi: 10.1007/s11705-018-1732-9
    [5] LI Y, LUO K. Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting[J]. RSC Adv,2019,9(15):8350−8354. doi: 10.1039/C9RA00865A
    [6] NOJAVAN S, ZARE K, MOHAMMADI-IVATLOO B. Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles[J]. Energy Conv Manag,2017,136(1):404−417.
    [7] ALAM M, KUMAR K, DUTTA V. Design and analysis of fuel cell and photovoltaic based 110 V DC microgrid using hydrogen energy storage[J]. Energy Storage,2019,1(3):e60.
    [8] 刘坚, 钟财富. 我国氢能发展现状与前景展望[J]. 中国能源,2019,41(2):32−36.

    LIU Jian, ZHONG Cai-fu. Chinese hydrogen energy development status and prospects[J]. China Energy,2019,41(2):32−36.
    [9] LIN Q C, LI Z S, LIN T J, LI B, LIAO X C, YU H Q, YU C L. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production[J]. Chin J Chem Eng,2020,28(10):2677−2688. doi: 10.1016/j.cjche.2020.06.037
    [10] LI Z, MA X Z, WU L, YE H. Synergistic effect of cocatalytic NiSe2 on stable 1T-MoS2 for hydrogen evolution[J]. RSC Adv,2021,11(12):6842−6849. doi: 10.1039/D1RA00506E
    [11] ANANTHARAJ S, KARTHIK E, SUBRAMANIAN B, KUNDU S. Pt nanoparticles anchored molecular self-assemblies of DNA: An extremely stable and efficient HER electrocatalyst with ultra-low Pt content[J]. ACS Catal,2016,6(7):4660−4672. doi: 10.1021/acscatal.6b00965
    [12] HOU D M, ZHOU W J, LIU X J, ZHOU K, XIE J, LI G Q, CHEN X W. Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction[J]. Electrochim Acta,2015,166:26−31. doi: 10.1016/j.electacta.2015.03.067
    [13] REN X P, YANG F, CHEN R, REN P Y, WANG Y H. Improvement of HER activity for MoS2: Insight into the effect and mechanism of phosphorus post-doping[J]. New J Chem,2020,44(4):1493−1499. doi: 10.1039/C9NJ05229A
    [14] LI Y W, YIN X L, HUANG X H, LIU X L, WU W. Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction[J]. Int J Hydrogen Energy,2020,45(33):16489−16499. doi: 10.1016/j.ijhydene.2020.04.085
    [15] VOIRY D, YAMAGUCHI H, LI J, SILVA R, ALVES D C B, FUJITA T, CHEN M, ASEFA T, SHENOY V B, EDA G, CHHOWALLA M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nat Mater,2013,12(9):850−855. doi: 10.1038/nmat3700
    [16] PAN Y P, ZHENG F W, WANG X X, QIN H Y, LIU E Z, SHA J W, ZHAO N Q, ZHANG P, MA L Y. Enhanced electrochemical hydrogen evolution performance of WS2 nanosheets by Te doping[J]. J Catal,2020,382:204−211. doi: 10.1016/j.jcat.2019.12.031
    [17] TIAN L, QIAO H, HUANG Z Y, QI X. Li-ion intercalated exfoliated WS2 nanosheets with enhanced electrocatalytic hydrogen evolution performance[J]. Cryst Res Technol,2021,3:2000165.
    [18] CHENG L, HUANG W, GONG Q, LIU C, DAI H. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction[J]. Angew Chem Int Ed,2014,53(30):7860−7863. doi: 10.1002/anie.201402315
    [19] YAO Y, JIN Z W, CHEN Y H, GAO Z F, YAN J Q, LIU H B, WANG J Z, LI Y L, LIU S Z. Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution reaction[J]. Carbon,2018,129:228−235.
    [20] LONKAR S P, PILLAI V V, ALHASSAN S M. Three dimensional (3D) nanostructured assembly of MoS2-WS2/Graphene as high performance electrocatalysts[J]. Int J Hydrogen Energy,2019,45(17):361−369.
    [21] LI W, XIA F, QU J, LI P, CHEN D H, CHEN Z, YU Y, LU Y, CARUSO R A, SONG W G. Versatile inorganic-organic hybrid WOx-ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis[J]. Nano Res,2014,7(6):903−916. doi: 10.1007/s12274-014-0452-9
    [22] YANG J Z, YU Z B, SUN W, LI Y, WU H D, GENG Z X, YANG Z X. Efficient electrocatalytic performance of WP nanorods propagated on WS2/C for Hydrogen evolution reduction[J]. ChemElectroChem,2020,7(14):3082−3088. doi: 10.1002/celc.202000649
    [23] YUAN Z Y, JIANG Q, FENG C Q, CHEN X, GUO Z P. Synthesis and performance of tungsten disulfide/carbon (WS2/C) composite as anode material[J]. J Electron Mater,2018,47:251−260. doi: 10.1007/s11664-017-5740-1
    [24] CHOI S H, KANG Y C. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres[J]. Nanoscale,2015,7(9):3965−3970. doi: 10.1039/C4NR06880G
    [25] YU S, JUNG J W, KIM I D. Single layers of WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries[J]. Nanoscale,2015,7(28):11945−11950. doi: 10.1039/C5NR02425K
    [26] YANG Z L, Gao D Q, ZHANG J, SHI S P, XU Q, XUE D S. Realization of high Curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology[J]. Nanoscale,2015,7(2):650−658. doi: 10.1039/C4NR06141A
    [27] LIU M M, GENG A F, YAN J H. Construction of WS2 triangular nanoplates array for hydrogen evolution reaction over a wide pH range[J]. Int J Hydrog Energy,2020,45(4):2909−2916. doi: 10.1016/j.ijhydene.2019.11.053
    [28] HUANG H D, ZHANG X F, ZHANG Y, HUANG B H, CAI J N, LIN S. Facile synthesis of laminated porous WS2/C composite and its electrocatalysis for oxygen reduction reaction[J]. Int J Hydrogen Energy,2018,43(17):8290−8297.
    [29] SAHOO M, SREENA K P, VIANYAN B P, RAMAPRABHU S. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Mater Res Bull,2015,61:383−390. doi: 10.1016/j.materresbull.2014.10.049
    [30] SIRAGHI CA C, HARTSCHUH A, QIAN H, PISCANEC S, FERRARI A C. Raman spectroscopy of graphene edges[J]. Nano Letters,2009,9(4):1433−1441. doi: 10.1021/nl8032697
    [31] 王新红. 硫脲的热分析研究[J]. 应用化工,2008,37(6):692−693.

    WANG Xin-hong. Thermal analysis of thiourea[J]. Appl Chem Ind,2008,37(6):692−693.
    [32] QI K, YU S S, WANG Q Y, ZHANG W, FAN J C, ZHENG W T, CUI X Q. Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity[J]. J Mater Chem A,2016,4(4):4025−4031.
    [33] HU T S, BIAN K, Tai G A, ZENG T, WANG X F, HUANG X H, XIONG K, ZHU K J. Oxidation-sulfidation approach for vertically growing MoS2 nanofilms catalysts on molybdenum foils as efficient HER catalysts[J]. J Phys Chem C,2016,120(50):25843−25850.
  • 加载中
图(12)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  144
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-01
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-04-19
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回