留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation

HU Tian-jun ZHAO Jin JIA Wen-yu WANG Ying JIA Jian-feng

胡天军, 赵瑾, 贾文玉, 王瀛, 贾建峰. 焙烧氧化PdCo非预期的乙二醇电催化氧化性能的研究[J]. 燃料化学学报(中英文), 2021, 49(6): 835-843. doi: 10.1016/S1872-5813(21)60079-8
引用本文: 胡天军, 赵瑾, 贾文玉, 王瀛, 贾建峰. 焙烧氧化PdCo非预期的乙二醇电催化氧化性能的研究[J]. 燃料化学学报(中英文), 2021, 49(6): 835-843. doi: 10.1016/S1872-5813(21)60079-8
HU Tian-jun, ZHAO Jin, JIA Wen-yu, WANG Ying, JIA Jian-feng. Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 835-843. doi: 10.1016/S1872-5813(21)60079-8
Citation: HU Tian-jun, ZHAO Jin, JIA Wen-yu, WANG Ying, JIA Jian-feng. Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 835-843. doi: 10.1016/S1872-5813(21)60079-8

焙烧氧化PdCo非预期的乙二醇电催化氧化性能的研究

doi: 10.1016/S1872-5813(21)60079-8
详细信息
  • 中图分类号: O646

Oxidative calcination of PdCo with unexpected electrocatalytic performance for ethylene glycol oxidation

Funds: The project was supported by the Natural Science Foundation of Shanxi Province (201901D111277), the National Natural Science Foundation of China (21571119) and Shanxi Normal University Graduate Science and Technology Innovation Project (2019XSY026).
More Information
  • 摘要: 钯基金属催化剂在碱性燃料电池中已有广泛的应用。然而,迄今为止,钯基金属催化剂的氧化处理对其在碱性燃料电池中应用的影响却鲜有报道。本研究通过对PdCo纳米金属催化剂的焙烧氧化处理,发现生成的PdO-Co3O4纳米复合材料在碱性溶液中对乙二醇电催化氧化的质量比活性和面积比活性分别是商业Pt/C的3.8和2.4倍。与PdCo纳米金属相比,PdO-Co3O4纳米复合材料在碱性溶液中对乙二醇电催化氧化的质量比活性和面积比活性分别提高了1.6和1.2倍。实验和计算结果表明,焙烧氧化处理改变了催化剂的表面形态和活性中心,在Co掺杂PdO(101)表面上,O2和OH吸附能降低,有利于稳定中间体C2H4OHO*和O−H解离,Co掺杂纳米级PdO(101)与乙二醇及其中间物种发生强烈的结合,导致形成不同的电化学动力学和反应路径,从而产生优良的电催化活性。PdO和Co3O4的协同作用明显增强了活性氧与催化剂表面之间的相互作用,不仅有利于超氧物种在催化剂表面上的形成,而且提高了催化剂的氧化还原性质,促进乙二醇的电催化氧化活性。本文提出的双/多金属氧化策略为构建其他催化剂提供了一个通用的方法。
    #: contributed equally to this work.
  • FIG. 726.  FIG. 726.

    FIG. 726. 

    Figure  1  XRD patterns of PdCo and PdO-Co3O4

    Figure  2  TEM image of PdCo

    Figure  3  TEM image of PdO-Co3O4

    Figure  4  TEM image of PdO-Co3O4 at different magnification

    Figure  5  HRTEM image of PdO-Co3O4

    Figure  6  HADDF image of PdO-Co3O4 and elemental mapping of Co, Pd, and O

    Figure  7  XPS spectra of Pd 3d for PdCo and PdO-Co3O4

    Figure  8  XPS spectra of Co 2p for PdCo and PdO-Co3O4

    Figure  9  CV curves of PdO-Co3O4, PdCo and commercial Pd/C in N2-saturated 1.0 mol/L KOH with the scan rate of 100 mV/s

    Figure  10  CV curves of PdO-Co3O4, PdCo and commercial Pd/C in 1.0 mol/L KOH + 0.5 mol/L EG with the scan rate of 100 mV/s for EG electrooxidation

    Figure  11  SA and MA of PdO-Co3O4, PdCo and commercial Pd/C for EGOR

    Figure  12  Current-time chronoamperometric response of PdO-Co3O4, PdCo and commercial Pd/C at −0.15 V in 1.0 mol/L KOH + 0.5 mol/L EG solution

    Figure  13  (a): The bond length and adsorption energy of O2 on Co-doped PdO (101) surface; (b): The bond length and adsorption energy of OH on Co-doped PdO (101) surface; (c): The adsorption and O-H dissociation of EG on Co-doped PdO (101)

  • [1] SHEN G, LIU J, WU H B, XU P, LIU F, TONGSH C, JIAO K, LI J, LIU M, CAI M, LEMMON J P, SOLOVEICHIK G, LI H, ZHU J, LU Y. Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells[J]. Nat Commun,2020,11(1):1191. doi: 10.1038/s41467-020-14822-y
    [2] WANG X X, SWIHART M T, WU G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation[J]. Nat Catal,2019,2(7):578−589. doi: 10.1038/s41929-019-0304-9
    [3] KHALAF M M, ABD EL-LATEEF H M, ALNAJJAR A O, MOHAMED I M A. A facile chemical synthesis of CuxNi(1−x)Fe2O4 nanoparticles as a nonprecious ferrite material for electrocatalytic oxidation of acetaldehyde[J]. Sci Rep,2020,10(1):2761. doi: 10.1038/s41598-020-59655-3
    [4] DING L X, WANG A L, LI G R, LIU Z Q, ZHAO W X, SU C Y, TONG Y X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation[J]. J Am Chem Soc,2012,134(13):5730−5733. doi: 10.1021/ja212206m
    [5] ZHU Y, BU L, SHAO Q, HUANG X. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C−C bond cleavage for ethanol oxidation electrocatalysis[J]. ACS Catal,2019,9(8):6607−6612. doi: 10.1021/acscatal.9b01375
    [6] LIANG Z, SONG L, DENG S, ZHU Y, STAVITSKI E, ADZIC R R, CHEN J, WANG J X. Direct 12-Electron oxidation of ethanol on a ternary Au(core)-PtIr(Shell) electrocatalyst[J]. J Am Chem Soc,2019,141(24):9629−9636. doi: 10.1021/jacs.9b03474
    [7] AN L, CHEN R. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production[J]. J Power Sources,2016,329:484−501. doi: 10.1016/j.jpowsour.2016.08.105
    [8] HU T, WANG Y, LIU Q, ZHANG L, WANG H, TANG T, CHEN W, ZHAO M, JIA J. In-situ synthesis of palladium-base binary metal oxide nanoparticles with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. Int J Hydrogen Energy,2017,42(41):25951−25959. doi: 10.1016/j.ijhydene.2017.08.160
    [9] MARINHO V L, ANTOLINI E, GIZ M J, CAMARA G A, POCRIFKA L A, PASSOS R R. Ethylene glycol oxidation on carbon supported binary PtM (M = Rh, Pd an Ni) electrocatalysts in alkaline media[J]. J Electroanal Chem,2021,880:114859. doi: 10.1016/j.jelechem.2020.114859
    [10] WANG H, JIANG B, ZHAO T T, JIANG K, YANG Y Y, ZHANG J, XIE Z, CAI W B. Electrocatalysis of ethylene glycol oxidation on bare and bi-modified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation[J]. ACS Catal,2017,7(3):2033−2041. doi: 10.1021/acscatal.6b03108
    [11] LIU Y, WEI M, RACITI D, WANG Y, HU P, PARK J H, BARCLAY M, WANG C. Electro-oxidation of ethanol using Pt3Sn alloy nanoparticles[J]. ACS Catal,2018,8(11):10931−10937. doi: 10.1021/acscatal.8b03763
    [12] KODIYATH R, RAMESH G V, KOUDELKOVA E, TANABE T, ITO M, MANIKANDAN M, UEDA S, FUJITA T, UMEZAWA N, NOGUCHI H, ARIGA K, ABE H. Promoted C−C bond cleavage over intermetallic TaPt3 catalyst toward low-temperature energy extraction from ethanol[J]. Energy Environ Sci,2015,8(6):1685−1689. doi: 10.1039/C4EE03746D
    [13] HAN S H, LIU H M, CHEN P, JIANG J X, CHEN Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Adv Energy Mater,2018,8(24):1801326. doi: 10.1002/aenm.201801326
    [14] HU T, WANG Y, XIAO H, CHEN W, ZHAO M, JIA J. Shape-control of super-branched Pd-Cu alloys with enhanced electrocatalytic performance for ethylene glycol oxidation[J]. Chem Commun,2018,54(95):13363−13366. doi: 10.1039/C8CC06901H
    [15] KUMAR A, MOHAMMADI M M, SWIHART M T. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures[J]. Nanoscale,2019,11(41):19058−19085. doi: 10.1039/C9NR05835D
    [16] YU N F, TIAN N, ZHOU Z Y, SHENG T, LIN W F, YE J Y, LIU S, MA H B, SUN S G. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst[J]. ACS Catal,2019,9(4):3144−3152. doi: 10.1021/acscatal.8b04741
    [17] IQBAL M, KIM Y, SAPUTRO A G, SHUKRI G, YULIARTO B, LIM H, NARA H, ALOTHMAN A A, NA J, BANDO Y, YAMAUCHI Y. Tunable concave surface features of mesoporous palladium nanocrystals prepared from supramolecular micellar templates[J]. ACS Appl Mater Interfaces,2020,12(46):51357−51365. doi: 10.1021/acsami.0c13136
    [18] SHI Y, LYU Z, ZHAO M, CHEN R, NGUYEN Q N, XIA Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications[J]. Chem Rev,2021,121(2):649−735.
    [19] ZAREIE YAZDAN-ABAD M, NOROOZIFAR M, DOUK A S, MODARRESI-ALAM A R, SARAVANI H. Shape engineering of palladium aerogels assembled by nanosheets to achieve a high performance electrocatalyst[J]. Appl Catal B: Environ,2019,250:242−249. doi: 10.1016/j.apcatb.2019.02.064
    [20] NIU W, ZHANG W, FIRDOZ S, LU X. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property[J]. Chem Mater,2014,26(6):2180−2186. doi: 10.1021/cm500210u
    [21] MA T, LIANG F. Au-Pd nanostars with low Pd content: Controllable preparation and remarkable performance in catalysis[J]. J Phys Chem C,2020,124(14):7812−7822. doi: 10.1021/acs.jpcc.0c00031
    [22] LU C L, PRASAD K S, WU H-L, HO J A A, HUANG M H. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity[J]. J Am Chem Soc,2010,132(41):14546−14553. doi: 10.1021/ja105401p
    [23] LIU H L, NOSHEEN F, WANG X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property[J]. Chem Soc Rev,2015,44(10):3056−3078. doi: 10.1039/C4CS00478G
    [24] LIU P, QIN R, FU G, ZHENG N. Surface coordination chemistry of metal nanomaterials[J]. J Am Chem Soc,2017,139(6):2122−2131. doi: 10.1021/jacs.6b10978
    [25] KRITTAYAVATHANANON A, DUANGDANGCHOTE S, PANNOPARD P, CHANLEK N, SATHYAMOORTHI S, LIMTRAKUL J, SAWANGPHRUK M. Elucidating the unexpected electrocatalytic activity of nanoscale PdO layers on Pd electrocatalysts towards ethanol oxidation in a basic solution[J]. Sustainable Energy Fuels,2020,4(3):1118−1125.
    [26] ABDEL HAMEED R M. Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol[J]. Appl Surf Sci,2017,411:91−104. doi: 10.1016/j.apsusc.2017.03.108
    [27] BARR M K S, ASSAUD L, BRAZEAU N, HANBÜCKEN M, NTAIS S, SANTINACCI L, BARANOVA E A. Enhancement of Pd catalytic activity toward ethanol electrooxidation by atomic layer deposition of SnO2 onto TiO2 nanotubes[J]. J Phys Chem C,2017,121(33):17727−17736. doi: 10.1021/acs.jpcc.7b05799
    [28] WANG Y, ZHANG L M, HU T J. Progress in oxygen reduction reaction electrocatalysts for metal-air batteries[J]. Acta Chim Sin,2015,73(4):316−325.
    [29] MUNEEB O, ESTRADA J, TRAN L, NGUYEN K, FLORES J, HU S, FRY-PETIT A M, SCUDIERO L, HA S, HAAN J L. Electrochemical oxidation of polyalcohols in alkaline media on palladium catalysts promoted by the addition of copper[J]. Electrochim Acta,2016,218:133−139. doi: 10.1016/j.electacta.2016.09.105
    [30] SCHALOW T, BRANDT B, STARR D E, LAURIN M, SHAIKHUTDINOV S K, SCHAUERMANN S, LIBUDA J, FREUND H-J. Size-dependent oxidation mechanism of supported pd nanoparticles[J]. Angew Chem Int Ed,2006,45(22):3693−3697. doi: 10.1002/anie.200504253
    [31] HAO J, PENG S, LI H, DANG S, QIN T, WEN Y, HUANG J, MA F, GAO D, LI F, CAO G. A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors[J]. J Mater Chem A,2018,6(33):16094−16100. doi: 10.1039/C8TA06349D
    [32] HU T, WANG Y, ZHANG L, TANG T, XIAO H, CHEN W, ZHAO M, JIA J, ZHU H. Facile synthesis of PdO-doped Co3O4 nanoparticles as an efficient bifunctional oxygen electrocatalyst[J]. Appl Catal B: Environ,2019,243:175−182. doi: 10.1016/j.apcatb.2018.10.040
    [33] ZHANG H, POKHREL S, JI Z, MENG H, WANG X, LIN S, CHANG C H, LI L, LI R, SUN B, WANG M, LIAO Y-P, LIU R, XIA T, MäDLER L, NEL A E. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co3O4 p-type semiconductor in cells and the lung[J]. J Am Chem Soc,2014,136(17):6406−6420. doi: 10.1021/ja501699e
    [34] WANG H, XU S, TSAI C, LI Y, LIU C, ZHAO J, LIU Y, YUAN H, ABILD-PEDERSEN F, PRINZ F B, NøRSKOV J K, CUI Y. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science,2016,354(6315):1031. doi: 10.1126/science.aaf7680
    [35] XIE S, DAI H, DENG J, LIU Y, YANG H, JIANG Y, TAN W, AO A, GUO G. Au/3DOM Co3O4: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene[J]. Nanoscale,2013,5(22):11207−11219. doi: 10.1039/c3nr04126c
    [36] YU A, LEE C, LEE N-S, KIM M H, LEE Y. Highly efficient silver-cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction[J]. ACS Appl Mater Interf,2016,8(48):32833−32841.
    [37] THANGASAMY P, KARUPPIAH S, SATHISH M, MURUGESAN S, S. M S K, RANGASAMY T. Anchoring of ultrafine Co3O4 nanoparticles on MWCNTs using supercritical fluid processing and its performance evaluation towards electrocatalytic oxygen reduction reaction[J]. Catal Sci Technol, 2017, 7 : 1227-1234.
    [38] ZHANG G, YANG J, WANG H, CHEN H, YANG J, PAN F. Co3O4−δ Quantum dots as a highly efficient oxygen evolution reaction catalyst for water splitting[J]. ACS Appl Mater Interf,2017,9(19):16159−16167.
    [39] ZHUANG Z, SHENG W, YAN Y. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction[J]. Adv Mater,2014,26(23):3950−3955. doi: 10.1002/adma.201400336
    [40] WANG W, YANG Y, LIU Y, ZHANG Z, DONG W, LEI Z. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation[J]. J Power Sources,2015,273:631−637. doi: 10.1016/j.jpowsour.2014.09.120
    [41] SUN F, ZHANG G, XU Y, CHANG Z, WAN P, LI Y, SUN X. Promoted oxygen reduction activity of Ag/Reduced graphene oxide by incorporated CoOx[J]. Electrochim Acta,2014,132:136−141. doi: 10.1016/j.electacta.2014.03.125
    [42] CHENG M, DUAN S, FAN H, SU X, CUI Y, WANG R. Core@shell CoO@Co3O4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors[J]. Chem Eng J,2017,327:100−108. doi: 10.1016/j.cej.2017.06.042
    [43] SUN Y, GAO S, LEI F, LIU J, LIANG L, XIE Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts[J]. Chem Sci,2014,5(10):3976−3982. doi: 10.1039/C4SC00565A
    [44] TAN Q, DU C, SUN Y, YIN G, GAO Y. Pd-around-CeO2−x hybrid nanostructure catalyst: Three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism[J]. J Mater Chem A,2014,2(5):1429−1435. doi: 10.1039/C3TA13843G
    [45] NONG S, DONG W, YIN J, DONG B, LU Y, YUAN X, WANG X, BU K, CHEN M, JIANG S, LIU L-M, SUI M, HUANG F. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction[J]. J Am Chem Soc,2018,140(17):5719−5727. doi: 10.1021/jacs.7b13736
    [46] SHENG T, LIN X, CHEN Z Y, HU P, SUN S G, CHU Y Q, MA C A, LIN W F. Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: A DFT study[J]. Phys Chem Chem Phys,2015,17(38):25235−25243. doi: 10.1039/C5CP02072G
  • 加载中
图(14)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  64
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 修回日期:  2021-01-20
  • 网络出版日期:  2021-04-13
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回