留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属负载型分子筛催化剂的NH3-SCR机理研究进展

张文博 陈佳玲 郭立 郑伟 王光华 郑申棵 吴晓琴

张文博, 陈佳玲, 郭立, 郑伟, 王光华, 郑申棵, 吴晓琴. 金属负载型分子筛催化剂的NH3-SCR机理研究进展[J]. 燃料化学学报(中英文), 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4
引用本文: 张文博, 陈佳玲, 郭立, 郑伟, 王光华, 郑申棵, 吴晓琴. 金属负载型分子筛催化剂的NH3-SCR机理研究进展[J]. 燃料化学学报(中英文), 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4
ZHANG Wen-bo, CHEN Jia-ling, GUO Li, ZHENG Wei, WANG Guang-hua, ZHENG Shen-ke, WU Xiao-qin. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4
Citation: ZHANG Wen-bo, CHEN Jia-ling, GUO Li, ZHENG Wei, WANG Guang-hua, ZHENG Shen-ke, WU Xiao-qin. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1294-1315. doi: 10.1016/S1872-5813(21)60080-4

金属负载型分子筛催化剂的NH3-SCR机理研究进展

doi: 10.1016/S1872-5813(21)60080-4
基金项目: 国家自然科学基金(22002114),武汉市科技局项目(2018060401011311)和国家重点研发计划(2017YFB0304303)资助
详细信息
    通讯作者:

    Tel:027-87643502, E-mail:chenjialing@wust.edu.cn

    zhengshenke@163.com

    wuxiaoqin@wust.edu.cn

  • 中图分类号: X511

Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts

Funds: The project was supported by the National Natural Science Foundation of China (22002114), the Wuhan Science and Technology Bureau (2018060401011311) and the National Key Research and Development Program (2017YFB0304303)
  • 摘要: 在NH3选择性催化还原(NH3-SCR)反应中,由于具有宽温度窗口和良好的水热稳定性,金属负载型分子筛是具有广泛应用潜力的脱硝催化剂。本文综述了Cu基和Fe基分子筛催化剂在NH3-SCR领域的研究进展,总结了催化剂的结构特征和NH3-SCR性能指标,并对相应的金属活性位点和反应机理进行了归纳。此外,系统介绍了密度泛函理论(DFT)计算在NH3-SCR反应机理中的应用及反应动力学的研究方法,并对比了不同催化剂体系下的表观动力学参数,为进一步研究金属负载型分子筛催化剂的NH3-SCR反应机理提供方法与思路。
  • FIG. 914.  FIG. 914.

    FIG. 914.  FIG. 914.

    图  1  铁基分子筛中FeII与NO的配位研究[70]

    Figure  1  Coordination of FeII with NO in Fe-based zeolite[70]

    (with permissions from ACS publications)

    图  2  金属负载型分子筛催化剂上NH3-SCR的反应路径[3]

    Figure  2  NH3-SCR reaction pathway over metal-based zeolite catalysts[3]

    (with permissions from ACS publications)

    图  3  铁基分子筛在NH3-SCR反应中可能形成的中间态过渡配合物

    Figure  3  Possible intermediate complexes formed on Fe-based zeolites in NH3-SCR

    图  4  Cu/SSZ-13上硝酸盐与亚硝酸盐类中间体的形成与分解[37]

    Figure  4  Formation and decomposition of nitrate and nitrite intermediates on Cu/SSZ-13[37]

    (with permissions from ACS publications)

    图  5  Cu/SSZ-13的六元环平面上的Cu2+化学环境变化[79]

    Figure  5  Changes of the local copper environment in d6r subunit of Cu/SSZ-13[79]

    (with permissions from ACS publications)

    图  6  Cu/SAPO-34上不同反应路径的自由能变化[116]

    Figure  6  Free energy diagrams of different reaction paths on Cu/SAPO-34[116]

    (with permissions from ACS publications)

    表  1  代表性的铁基NH3-SCR分子筛催化剂

    Table  1  Summary of representative Fe-based NH3-SCR zeolites catalysts

    CatalystTopologyChannel systemPreparation methodMetal content
    w/%
    Reaction conditionTemperature window/℃NOx conversionRef.
    Fe/ZSM-5MFI3-dimensiona l10-MRIEa1.90.1% NO,0.1% NH3,5% O2,6% H2O,balance of He,GHSV =
    1.9 × 105 h−1
    300−550> 80%[59]
    Fe/BetaBEA3-dimensiona l12-MRCVDb4.70.1% NO,0.12% NH3,8% O2,8% H2O,10%CO2,balance of N2,GHSV = 2.1 × 105 h−1300−500> 90%[60]
    Fe/MordeniteMOR1-dimensiona l12-MRIE2.30.05% NO,0.05% NH3,5% O2,balance of N2,GHSV =
    1.6 × 104 h−1
    350−500100%[61]
    Fe/SSZ-13CHA3-dimensiona l8-MRIE1.370.035% NO,0.035% NH3,14% O2,2.5% H2O,balance of N2,GHSV = 2 × 105 h−1320−550> 80%[50]
    Fe-SAPO-34CHA3-dimensiona l8-MROPc1.00.035% NO,0.035% NH3,14% O2,5%CO2,balance of Ar,GHSV = 3.0 × 104 h−1300−600> 80%[51]
    Fe/FerrieriteFER2-dimensiona l10-MRCVD4.70.1% NO,0.12% NH3,8% O2,8% H2O,10%CO2,balance of N2,GHSV = 2.1 × 105 h−1250−500> 90%[60]
    Fe-SSZ-39AEI3-dimensiona l8-MROP1.010.005% NO,0.006% NH3,10% O2,10% H2O,balance of N2,GHSV = 4.5 × 105 h−1300−550> 90%[57]
    Fe/LLTL1-dimensiona l12-MRCVD5.10.1% NO,0.12% NH3,8% O2,8% H2O,10%CO2,balance of N2,GHSV = 2.1 × 105 h−1300−500> 80%[60]
    Fe-ERIERI3-dimensiona l8-MROP1.030.05% NO,0.06% NH3,10% O2,10% H2O,balance of N2,GHSV = 1 × 105 h−1450−550> 60%[62]
    Fe-SSZ-16AFX3-dimensiona l8-MROP0.950.05% NO,0.05% NH3,5% O2,10% H2O,balance of N2,GHSV = 1 × 105 h−1400−550> 80%[62]
    Fe-MCM-22MWW2-dimensiona l10-MROP4.80.05% NO,0.05% NH3,5% O2,balance of N2,GHSV = 6 × 104 h−1190−490> 80%[23]
    Fe/LTALTA3-dimensiona l8-MRIE1.80.05% NO,0.05% NH3,5% O2,10% H2O,balance of N2,GHSV = 1 × 105 h−1370−580> 90%[58]
    Fe/UZM-35MSE3-dimensiona l12-MRIE1.90.05% NO,0.05% NH3,5% O2,10% H2O,balance of N2,GHSV = 1 × 105 h−1250−570> 90%[56]
    a: ion-exchange; b: chemical vapor deposition; c: one-pot
    下载: 导出CSV

    表  2  代表性的铜基NH3-SCR分子筛催化剂总结

    Table  2  Summary of representative Cu-based NH3-SCR zeolites catalysts

    CatalystTopologyChannel systemPreparation methodMetal content
    w/%
    Reaction conditionTemperature window/℃NOx conversionRef.
    Cu/ZSM-5MFI3-dimensiona l10-MRIEa4.70.05% NO,0.05% NH3,5% O2, 10%H2O,balance of N2,GHSV = 1.0 × 105 h−1150−450> 80%[89]
    Cu/BetaBEA3-dimensiona l12-MRIE2.10.075% NO,0.075% NH3,9.5% O2,balance of Ar,GHSV = 9 × 104 h−1280−520> 70%[90]
    Cu/SSZ-13CHA3-dimensiona
    l8-MR
    IE3.60.05% NO,0.05% NH3,5% O2, 10% H2O,balance of N2,GHSV = 4.0 × 105 h−1200−550> 85%[91]
    Cu/SAPO-34CHA3-dimensiona
    l8-MR
    IE1.890.05% NO,0.05% NH3,5% O2,balance of N2,GHSV = 6.0 × 103 h−1190−540> 80%[52]
    Cu/SAPO STA-7SAV3-dimensiona
    l8-MR
    IE3.30.05% NO,0.05% NH3,5% O2,balance of N2,GHSV = 1 × 105 h−1250−350> 80%[84]
    Cu/SAPO STA-7SAV3-dimensiona
    l8-MR
    DSb4.20.05% NO,0.05% NH3,5% O2,balance of N2,GHSV = 1 × 105 h−1200−400> 80%[84]
    Cu/SSZ-16AFX3-dimensiona
    l8-MR
    IE5.650.05% NO,0.05% NH3,10% O2,balance of N2,GHSV = 4.25 × 104 h−1200−500> 90%[52]
    Cu/Nu-3LEV2-dimensiona
    l8-MR
    IE0.790.05% NO,0.05% NH3,10% O2,balance of N2,GHSV = 4.25 × 104 h−1270−420> 90%[52]
    Cu/Sigma-1DDR2-dimensiona
    l8-MR
    IE0.820.05% NO,0.05% NH3,10% O2,balance of N2,GHSV = 4.25 × 104 h−1230−450> 90%[52]
    Cu/SSZ-39AEI3-dimensiona
    l8-MR
    IE0.520.05% NO,0.05% NH3,7% O2,balance of N2,GHSV = 2.7 × 105h−1220−550> 90%[92]
    Cu/ERIERI3-dimensiona
    l8-MR
    IE2.20.05% NO,0.053% NH3,7% O2,5% H2O,balance of N2,GHSV = 1 × 105 h−1250−500> 80%[62]
    Cu/SSZ-16AFX3-dimensiona
    l8-MR
    IE3.00.05% NO,0.053% NH3,7% O2,5% H2O,balance of N2,GHSV = 1 × 105 h−1270−550> 90%[62]
    Cu/SAPO-18AEI3-dimensiona
    l8-MR
    IE5.60.05% NO,0.053% NH3,7% O2,5% H2O,balance of N2,GHSV = 4.5 × 105 h−1240−460> 90%[82]
    Cu/KFIKFI3-dimensiona
    l8-MR
    IE4.70.05% NO,0.05% NH3,8% O2,5% H2O,balance of N2,GHSV = 1.2 × 105 h−1250−500> 90%[93]
    Cu/RHORHO3-dimensiona
    l8-MR
    IE2.40.05% NO,0.05% NH3,5% O2, 10% H2O,balance of N2,GHSV = 1 × 105 h−1250−500> 90%[94]
    Cu/SAPO-44CHA3-dimensiona
    l8-MR
    IE1.590.05% NO,0.05% NH3,5.3% O2,balance of He,GHSV = 1 × 105h−1180−550> 90%[83]
    Cu/LTALTA3-dimensiona
    l8-MR
    IE2.70.05% NO,0.05% NH3,5% O2, 10% H2O,balance of N2,GHSV = 1 × 105 h−1220−600> 90%[85]
    Cu/UZM-35MSE3-dimensiona
    l12-MR
    IE3.30.05% NO,0.05% NH3,5% O2, 10% H2O,balance of N2,GHSV = 1 × 105 h−1200−550> 90%[88]
    a: ion-exchange, b: directly synthesised
    下载: 导出CSV

    表  3  各铁基和铜基分子筛催化剂上标准NH3-SCR反应的表观反应活化能

    Table  3  Apparent activation energy values of standard NH3-SCR reactions over Fe- and Cu-based zeolite catalysts

    CatalystTemperature range t/℃Ea/(kJ·mol−1Ref.
    Cu/ZSM-5150−24042[120]
    Fe/ZSM-5200−25046[121]
    Cu/BEA100−14058.9[122]
    Fe/BEA350−40048[56]
    Cu/MOR200−25035[123]
    Fe/MOR220−32058[124]
    Cu/SSZ-13100−20043[125]
    Fe/SSZ-13220−27048[76]
    Cu/SAPO-34100−20033.6[101]
    Cu/SAPO-18150−18058.3[126]
    Cu/KFI140−18053[93]
    Cu/FAU190−24029[127]
    Cu/SAPO-44150−20038.2[83]
    Cu/LTA170-20043[86]
    Fe/LTA350−40049[56]
    Fe/UZM-35350−40048[56]
    下载: 导出CSV
  • [1] PU Y J, XIE X Y, JIANG W J, YANG L, JIANG X, YAO L. Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: A review[J]. Chin Chem Lett,2020,31(10):2549−2555. doi: 10.1016/j.cclet.2020.04.012
    [2] SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement: A review[J]. Sci Total Environ,2010,408(19):3976−3989. doi: 10.1016/j.scitotenv.2010.06.001
    [3] HAN L P, CAI S X, GAO M, HASEGAWA J Y, WANG P L, ZHANG J P, SHI L Y, ZHANG D S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem Rev,2019,119(19):10916−10976. doi: 10.1021/acs.chemrev.9b00202
    [4] ZHANG R D, LIU N, LEI Z G, CHEN B H. Selective transformation of carious nitrogen-containing exhaust gases toward N2 over zeolite catalysts[J]. Chem Rev,2016,116(6):3658−3721. doi: 10.1021/acs.chemrev.5b00474
    [5] JOHNSON T V. Review of diesel emissions and control[J]. Ind Eng Chem Res,2009,10(5):275−285.
    [6] WANG J H, ZHAO H W, HALLER G, LI Y D. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Appl Catal B: Environ,2017,202(2):346−354.
    [7] ZHANG L, WU Q M, MENG X J, MULLER U, FEYEN M, DAI D, MAURER S, MCGUIRE R, MOINI A, PARVULESCU A N, ZHANG W P, SHI C A, YOKOI T, PAN X L, BAO X H, GIES H, MARLER B, DEVOS D E, KOLB U, XIAO F S. Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines[J]. React Chem Eng,2019,4(4):975−985.
    [8] ZHANG Y, ZHU X, SHEN K, XU H, SUN K, ZHOU C. Influence of ceria modification on the properties of TiO2-ZrO2 supported V2O5 catalysts for selective catalytic reduction of NO by NH3[J]. J Colloid Interface Sci,2012,376(1):233−238. doi: 10.1016/j.jcis.2012.03.001
    [9] LIU Z G, OTTINGER N A, CREMEENS C M. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment[J]. Atmospheric Environ,2015,104(1):154−161.
    [10] 史安举. V2O5-WO3-TiO2体系改性NH3-SCR 催化剂的催化活性及水热定性研究[D]. 天津: 天津大学, 2011.

    SHI An-ju. Study on catalytic activity and hydrothermal characterization of NH3-SCR catalyst modified by V2O5-WO3-TiO2 system[D]. Tianjin: Tianjin University, 2011.
    [11] CHEN C M, CAO Y, LIU S T, CHEN J M, JIA W B. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chin J Catal,2018,39(8):1347−1365. doi: 10.1016/S1872-2067(18)63090-6
    [12] BAUNACK J. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Rev Chem Eng,2019,35(2):239−264. doi: 10.1515/revce-2017-0064
    [13] CHEN L, SI Z C, WU X D, WENG D, RAN R, YU J. Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A review[J]. J Rare Earths,2014,32(10):907−917. doi: 10.1016/S1002-0721(14)60162-9
    [14] IWAMOTO M, FURUKAWA H, KAGAWA S. Catalytic decomposition of nitric monoxide over copper ion-exchanged zeolites[J]. Stud Surf Sci Catal,1986,28(1):943−949.
    [15] MOHAN S, DINESHA P, KUMAR S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review[J]. Chem Eng J,2020,384(1):123253−123262.
    [16] CHENG J, HAN S, YE Q, CHENG S Y, KANG T F, DAI H X. Effects of hydrothermal aging at high and low temperatures on the selective catalytic reduction of NOx with NH3 over Cu/SAPO-34[J]. Res Chem Intermediat,2019,45(4):2023−2044. doi: 10.1007/s11164-018-03712-0
    [17] WANG J, FAN D Q, YU T, WANG J Q, HAO T, HU X Q, SHEN M Q, LI W. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species[J]. J Catal,2015,322(1):84−90.
    [18] XIANG X, WU P F, CAO Y, CAO L, WANG Q, XU S, TIAN P, LIU Z. Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NOx with NH3[J]. Chin J Catal,2017,38(5):918−927. doi: 10.1016/S1872-2067(17)62836-5
    [19] WANG A Y, WANG Y L, WALTER E D, WASHTON N M, GUO Y L, LU G Z, PEDEN C H, GAO F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects[J]. Catal Today,2019,320(1):91−99.
    [20] SZANYI J, GAO F, KWAK J H, KOLLAR M, WANG Y L, PEDEN C H F. Characterization of Fe2+ ions in Fe, H/SSZ-13 zeolites: FTIR spectroscopy of CO and NO probe molecules[J]. Phys Chem Chem Phys,2016,18(15):10473−10485. doi: 10.1039/C6CP00136J
    [21] GAO F, MEI D H, WANG Y L, SZANYI J, PEDEN C H F. Selective catalytic reduction over Cu/SSZ-13: Linking homo- and heterogeneous catalysis[J]. J Am Chem Soc,2017,139(13):4935−4942. doi: 10.1021/jacs.7b01128
    [22] GAO F, ZHENG Y, KUKKADAPU R K, WANG Y L, WALTER E D, SCHWENZER B, SZANYI J, PEDEN C H F. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: Nature of the Fe ions and structure-function relationships[J]. ACS Catal,2016,6(5):2939−2954. doi: 10.1021/acscatal.6b00647
    [23] CHEN J L, PENG G, ZHANG W B, ZHENG W, GUO L, WU X Q. Excellent performance of one-pot synthesized Fe-containing MCM-22 zeolites for the selective catalytic reduction of NOx with NH3[J]. Catal Sci Technol,2020,10(19):1−16.
    [24] WANG H, XU R N, JIN Y, ZHANG R D. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts[J]. Catal Today,2019,327(1):295−307.
    [25] LONG S Y, PENG D J, YAN Z, PO S W, YAN S X. Selective catalytic reduction of NOx with NH3: opportunities and challenges of Cu-based small-pore zeolites[J]. Natl Sci Rev,2021,17(3):1−11.
    [26] RESINI C, MONTANARI T, NAPPI L, BAGNASCO G, ROCCHINI G, BUSCA G, BREGANI F, NOTARO M, ROCCHINI G. Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts: Characterisation and catalytic activity[J]. J Catal,2003,214(2):179−190. doi: 10.1016/S0021-9517(02)00153-7
    [27] ANTONIO G, ISABELLA N, ENRICO T. Ammonia blocking of the “Fast SCR” reactivity over a commercial Fe-zeolite catalyst for diesel exhaust aftertreatment[J]. J Catal,2009,265(2):141−147. doi: 10.1016/j.jcat.2009.04.014
    [28] GROSSALE A, NOVA I, TRONCONI E, CHATTERJEE D, WEIBEL M. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. J Catal,2008,256(2):312−322. doi: 10.1016/j.jcat.2008.03.027
    [29] LONG R Q, YANG R T. Superior ion-exchanged ZSM-5 catalysts for selective catalytic oxidation of ammonia to nitrogen[J]. Chem Commun,2000,17(17):1651−1652.
    [30] GAO F, WALTER E D, WASHTON N M, SZANYI J, PEDEN C H F. Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: Solid-state ion exchange and one-pot synthesis[J]. Appl Catal B: Environ,2015,162(1):501−514.
    [31] ELLMERS I, VELEZ R P, BENTRUP U, BRUCKNER A, GRUNERT W. Oxidation and selective reduction of NO over Fe-ZSM-5 – How related are these reactions?[J]. J Catal,2014,311(1):199−211.
    [32] LIU J X, YU F H, LIU J, CUI L F, ZHAO Z, WEI Y C, SUN Q Y. Synthesis and kinetics investigation of meso-microporous Cu-SAPO-34 catalysts for the selective catalytic reduction of NO with ammonia[J]. J Environ Sci,2016,48(11):45−58.
    [33] GRNERT W, KYDALA GANESHA P, ELLMERS I, PREZ VLEZ R, HUANG H M, BENTRUP U, SCHNEMANN V, BRCKNER A. Active sites of the selective catalytic reduction of NO by NH3 over Fe-ZSM-5: Combining reaction kinetics with postcatalytic Mössbauer spectroscopy at cryogenic temperatures[J]. ACS Catal,2020,10(5):3119−3130. doi: 10.1021/acscatal.9b04627
    [34] XIN Y, LI Q, ZHANG Z L. Zeolitic materials for DeNOx selective catalytic reduction[J]. ChemCatChem,2018,10(1):29−41. doi: 10.1002/cctc.201700854
    [35] ZHANG T, QIU F, CHANG H Z, LI X, LI J H. Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods[J]. Catal Sci Technol,2016,6(16):1−41.
    [36] WANG Y J, XIE L J, LIU F D, RUAN W Q. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NOx with NH3[J]. J Environ Sci,2019,81(7):195−204.
    [37] SU W, CHANG H, PENG Y, ZHANG C, LI J. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures[J]. Environ Sci Technol,2015,49(1):467−473. doi: 10.1021/es503430w
    [38] IWAMOTO M, YAHIRO H. Novel catalytic decomposition and reduction of NO[J]. Catal Today,1994,22(1):5−18. doi: 10.1016/0920-5861(94)80089-8
    [39] LI J H, CHANG H Z, MA L, HAO J M, YANG R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-a review[J]. Catal Today,2011,175(1):147−156. doi: 10.1016/j.cattod.2011.03.034
    [40] GAO F, WANG Y L, KOLLAR M, WASHTON N M, SZANYI J, PEDEN C H F. A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts[J]. Catal Today,2015,258(2):347−358.
    [41] QI G S, YANG R T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ,2005,60(1/2):13−22. doi: 10.1016/j.apcatb.2005.01.012
    [42] FREY A M, MERT S, DUE-HANSEN J, FEHRMANN R, CHRISTENSEN C H. Fe-BEA zeolite catalysts for NH3-SCR of NOx[J]. Catal Letters,2009,130(1/2):1−8.
    [43] HE C H, WANG Y H, CHENG Y S, LAMBERT C K, YANG R T. Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia[J]. Appl Catal A: Gen,2009,368(1):121−126.
    [44] BORON P, CHMIELARZ L, GURGUL J, LATKA K, GIL B, MARSZALEK B, DZWIGAJ S. Influence of iron state and acidity of zeolites on the catalytic activity of FeHBEA, FeHZSM-5 and FeHMOR in SCR of NO with NH3 and N2O decomposition[J]. Microporous Mesoporous Mater,2015,203(1):73−85.
    [45] MONTENEGRO G, ONORATI A. Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts[M]. United Kingdom: Springer New York Heidelberg Dordrecht London, 2014.
    [46] BULL I, XUE W, BOORSE R, JAGLOWSKI W. Catalyseurs de zéolite cha cuivre: US, WO2008106519 A1[P]. 2008-09-04.
    [47] KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal,2010,275(2):187−190. doi: 10.1016/j.jcat.2010.07.031
    [48] VENNESTRM P N R, KATERINOPOULOU A, TIRUVALAM R R, KUSTOV A, MOSES P G, CONCEPCION P, CORMA A. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3[J]. ACS Catal,2013,3(9):2158−2161. doi: 10.1021/cs400499p
    [49] BEALE A M, GAO F, LEZCANO-GONZALEZ I, PEDEN C H, SZANYI J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chem Soc Rev,2015,44(20):7371−7405. doi: 10.1039/C5CS00108K
    [50] GAO F, KOLLAR M, KUKKADAPU R K, WASHTON N M, WANG Y L, SZANYI J, PEDEN C H. Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study[J]. Appl Catal B: Environ,2015,164(2):407−419.
    [51] ANDONOVA S, TAMM S, MONTREUIL C, LAMBERT C, OLSSON L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Appl Catal B: Environ,2016,180(1):775−787.
    [52] FICKEL D W, ADDIO E D, LAUTERBACH J A, LOBO R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B: Environ,2011,102(3):441−448.
    [53] SHI X Y, LIU F D, SHAN W P, HONG H E. Hydrothermal deactivation of Fe-ZSM-5 prepared by different methods for the selective catalytic reduction of NOx with NH3[J]. J Catal,2012,33(S2/3):454−464.
    [54] LEISTNER K, OLSSON L. Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR[J]. Appl Catal B: Environ,2015,165(1):192−199.
    [55] NIU C, SHI X Y, LIU K, YOU Y, WANG S X, HE H. A novel one-pot synthesized CuCe-SAPO-34 catalyst with high NH3-SCR activity and H2O resistance[J]. Catal Commun,2016,81(1):20−23.
    [56] RYU T, HONG S B. Iron-exchanged UZM-35: An active NH3-SCR catalyst at low temperatures[J]. Appl Catal B: Environ,2020,266:118622−118630. doi: 10.1016/j.apcatb.2020.118622
    [57] MARTIN N, VENNESTROM P N R, THOGERSEN J R, MOLINER M, CORMA A. Iron-containing SSZ-39 (AEI) zeolite: An active and stable high-temperature NH3-SCR catalyst[J]. ChemCatChem,2017,9(10):1754−1757. doi: 10.1002/cctc.201601627
    [58] RYU T, KANG Y, NAM I-S, HONG S B. Iron-exchanged high-silica LTA zeolites as hydrothermally stable NH3-SCR catalysts[J]. React Chem Eng,2019,4(6):1050−1058. doi: 10.1039/C9RE00007K
    [59] LI J H, ZHU R H, CHENG Y S. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOx with ammonia[J]. Environ Sci Technol,2010,5(44):1799−1805.
    [60] IWASAKI M, YAMAZAKI K, SHINJOH H. NOx reduction performance of fresh and aged Fe-zeolites prepared by CVD: Effects of zeolite structure and Si/Al2 ratio[J]. Appl Catal B: Environ,2011,102(2):302−309.
    [61] MA L, LI J, CHENG Y, LAMBERT C K, FU L. Propene poisoning on three typical Fe-zeolites for SCR of NOx with NH3: From mechanism study to coating modified architecture[J]. Environ Sci Technol,2012,46(3):1747−1754. doi: 10.1021/es203070g
    [62] MARTIN N, PARIS C, VENNESTROM P N R, THOGERSEN J R, MOLINER M, CORMA A. Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents[J]. Appl Catal B: Environ,2017,217(1):125−136.
    [63] JAVIER P R, SANTHOSH KUMAR M, BRUCKNER A. Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior[J]. J Catal,2004,223(1):13−27. doi: 10.1016/j.jcat.2004.01.007
    [64] BRANDENBERGER S, KROCHER O, TISSLER A, ALTHOFF R. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3[J]. Appl Catal B: Environ,2010,95(3):348−357.
    [65] YUAN E H, WU G J, DAI W L, GUAN N J, LI L D. One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia[J]. Catal Sci Technol,2017,7(14):3036−3044. doi: 10.1039/C7CY00724H
    [66] SELLERI T, NOVA I, TRONCONI E. The low-temperature interaction of NH3/NO/NO2+O2 with Fe-ZSM-5+BaO/Al2O3 and H-ZSM-5+BaO/Al2O3: Influence of phase separation and relevance for the NH3-SCR chemistry[J]. Appl Catal B: Environ,2017,206(1):471−478.
    [67] METKAR P S, HAROLD M P, BALAKOTAIAH V. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts[J]. Chem Eng Sci,2013,87(1):51−66.
    [68] KUMAR M S, SCHWIDDER M, GRUNERT W, BRÜCKNER A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach[J]. J Catal,2004,227(2):384−397. doi: 10.1016/j.jcat.2004.08.003
    [69] SCHWIDDER M, KUMAR M, KLEMENTIEV K, POHL M, BRUCKNER A, GRUNERT W. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe contentI. Relations between active site structure and catalytic performance[J]. J Catal,2005,231(2):314−330. doi: 10.1016/j.jcat.2005.01.031
    [70] BOUBNOV A, CARVALHO H W, DORONKIN D E, GUNTER T, GALLO E, ATKINS A J, JACOB C R, GRUNWALDT J D. Selective catalytic reduction of NO over Fe-ZSM-5: Mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy[J]. J Am Chem Soc,2014,136(37):13006−13015. doi: 10.1021/ja5062505
    [71] JIANG T, LOBO R F. On the Mechanism of Ammonia SCR over Cu- and Fe-Containing Zeolite Catalysts[M]. Cham: Springer International Publishing, 2018.
    [72] YU T, HAO T, FAN D Q, WANG J, SHEN M Q, LI W. Recent NH3-SCR mechanism research over Cu/SAPO-34 catalyst[J]. J Phys Chem C,2014,118(13):6565−6575. doi: 10.1021/jp4114199
    [73] WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, LU G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal,2018,358(2):199−210.
    [74] LACY D C, MUKHERJEE J, LUCAS R L, DAY V W, BOROVIK A S. Metal complexes with varying intramolecular hydrogen bonding networks[J]. Polyhedron,2013,52(5):261−267.
    [75] REEDIJK J. Coordination chemistry beyond Werner: Interplay between hydrogen bonding and coordination[J]. Chem Soc Rev,2013,42(4):1776−1783. doi: 10.1039/C2CS35239G
    [76] KOVARIK L, WASHTON N M, KUKKADAPU R K, DEVARAJ A, WANG A Y, WANG Y L, SZANYI J, PEDEN C H F, GAO F. Transformation of active sites in Fe/SSZ-13 SCR catalysts during hydrothermal aging: A spectroscopic, microscopic, and kinetics study[J]. ACS Catal,2017,7(4):2458−2470. doi: 10.1021/acscatal.6b03679
    [77] MACCHI P, SIRONI A. Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities[J]. Coord Chem Rev,2003,238(3):383−412.
    [78] HIDEK F, HISASHI O. Dioxygen oxidation of coordinated nitrosyl to nitro on dmf-bridged dinuclear CoPb complex[J]. Bull Chem Soc Jpn,1998,71(3):671−677. doi: 10.1246/bcsj.71.671
    [79] DEKA U, JUHIN A, EILERTSEN E A, EMERICH H, GREEN M A, KORHONEN S T, WECKHUYSEN B M, BEALE A M. Confirmation of isolated Cu2+ Ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction[J]. J Phys Chem C,2012,116(7):4809−4818. doi: 10.1021/jp212450d
    [80] KORHONEN S T, FICKEL D W, LOBO R F, WECKHUYSEN B M, BEALE A M. Isolated Cu2+ ions: active sites for selective catalytic reduction of NO[J]. Chem Eng J,2011,47(2):800−802.
    [81] ZHAO Y G, HU J, HUA L, SHUAI S J, WANG J X. Ammonia storage and slip in a urea selective catalytic reduction catalyst under steady and transient conditions[J]. Ind Eng Chem Res,2011,50(21):11863−11871. doi: 10.1021/ie201045w
    [82] MARTINEZ-FRANCO R, MOLINER M, CORMA A. Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx[J]. J Catal,2014,319(1):36−43.
    [83] XIN Y, WANG X, LI Q, MA X C, QI Y X, ZHENG L R, ANDERSON J A, ZHANG Z L. The Potential of Cu-SAPO-44 in the Selective Catalytic Reduction of NOx with NH3[J]. ChemCatChem,2016,8(24):3740−3745. doi: 10.1002/cctc.201601159
    [84] PICONE A. L, WARRENDER S J, SLAWIN A M Z, DAWSON D M, ASHBROOK S E, WRIGHT P A, THOMPSON S P, GABEROVA L, LLEWELLYN P L, MOULIN B, VIMONT A, DATURI M, PARK M B, SUNG S K, NAM I-S, HONG S B. A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO[J]. Microporous Mesoporous Mater,2011,146(1/3):36−47. doi: 10.1016/j.micromeso.2011.04.039
    [85] RYU T, AHN N H, SEO S, CHO J, KIM H, JO D H, PARK G T, KIM P S, KIM C H, BRUCE E L, WRIGHT P A, NAM I-S, HONG S B. Fully xopper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3-SCR catalysts[J]. Angew Chem Int Ed,2017,56(12):3256−3260. doi: 10.1002/anie.201610547
    [86] RYU T, KIM H, HONG S B. Nature of active sites in Cu-LTA NH3-SCR catalysts: A comparative study with Cu-SSZ-13[J]. Appl Catal B: Environ,2019,245(1):513−521.
    [87] JO D H, PARK G T, RYU T, HONG S B. Economical synthesis of high-silica LTA zeolites: A step forward in developing a new commercial NH3-SCR catalyst[J]. Appl Catal B: Environ,2019,243(1):212−219.
    [88] LEE J H, KIM Y J, RYU T, KIM P S, CHANG H K, HONG S B. Synthesis of zeolite UZM-35 and catalytic properties of copper-exchanged UZM-35 for ammonia selective catalytic reduction[J]. Appl Catal B: Environ,2017,200:428−438. doi: 10.1016/j.apcatb.2016.07.040
    [89] PARK J, PARK H, BAIK J, NAM I, SHIN C, LEE J, CHO B, OH S. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process[J]. J Catal,2006,240(1):47−57. doi: 10.1016/j.jcat.2006.03.001
    [90] DE LA TORRE U, PEREDA AYO B, GONZALEZ VELASCO J R. Cu-zeolite NH3-SCR catalysts for NOx removal in the combined NSR–SCR technology[J]. Chem Eng J,2012,207−208(1):10−17.
    [91] XIE L J, LIU F D, REN L M, SHI X, XIAO F S, HE H. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol,2014,48(1):566−572. doi: 10.1021/es4032002
    [92] MOLINER M, FRANCH C, PALOMARES E, GRILL M, CORMA A. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx[J]. Chem Eng J,2012,48(66):8264−8266.
    [93] KIM J, CHO S J, KIM D H. Facile synthesis of KFI-type zeolite and its application to selective catalytic reduction of NOx with NH3[J]. ACS Catal,2017,7(9):6070−6081. doi: 10.1021/acscatal.7b00697
    [94] KE Q, SUN T, CHENG H, CHEN H, LIU X, WEI X, WANG S. Targeted synthesis of ultrastable high-silica RHO zeolite through alkali metal-crown ether interaction[J]. Chem Asian J,2017,12(10):1043−1047. doi: 10.1002/asia.201700303
    [95] BRANDENBERGER S, KROECHER O, TISSLER A, ALTHOFF R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev Sci Eng,2008,50(4):492−531. doi: 10.1080/01614940802480122
    [96] GAO F, WALTER E D, KOLLAR M, WANG Y L, SZANYI J, PEDEN C H F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions[J]. J Catal,2014,319(1):1−14.
    [97] VERMA A A, BATES S A, ANGGARA T, PAOLUCCI C, PAREKH A A, KAMASAMUDRAM K, YEZERETS A, MILLER J T, DELGASS W N, SCHNEIDER W F, RIBEIRO F H. NO oxidation: A probe reaction on Cu-SSZ-13[J]. J Catal,2014,312(1):179−190.
    [98] WANG Y, LI G G, ZHANG S Q, ZHANG X Y, ZHANG X, HAO Z P. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chem Eng J,2020,393:124782−124795. doi: 10.1016/j.cej.2020.124782
    [99] ZHU N, SHAN W P, SHAN Y L, DU J P, LIAN Z H, ZHANG Y, HE H. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Eng J,2020,388(2):124250−124261.
    [100] SONG J, WANG Y L, WALTER E D, WASHTON N M, MEI D H, KOVARIK L, ENGELHARD M H, PRODINGER S, WANG Y, PEDEN C H F, GAO F. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability[J]. ACS Catal,2017,7(12):8214−8227. doi: 10.1021/acscatal.7b03020
    [101] XUE J J, WANG X Q, QI G S, WANG J, SHEN M Q, LI W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature[J]. J Catal,2013,297(12):56−64.
    [102] LIU F D, YU Y B, HE H. Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: structure-activity relationship and reaction mechanism aspects[J]. Chem Commun,2014,45(36):8445−8463.
    [103] MCEWEN J S, ANGGARA T, SCHNEIDER W F, KISPERSKY V F, MILLER J T, DELGASS W N, RIBEIRO F H. Integrated operando X-ray absorption and DFT characterization of Cu-SSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3[J]. Catal Today,2012,184(1):129−144. doi: 10.1016/j.cattod.2011.11.037
    [104] CHEN B H, XU R N, ZHANG R D, LIU N. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia[J]. Environ Sci Technol,2014,48(23):13909−13916. doi: 10.1021/es503707c
    [105] ZHAO S, HUANG L M, JIANG B Q, CHENG M, ZHANG J W, HU Y J. Stability of Cu-Mn bimetal catalysts based on different zeolites for NOx removal from diesel engine exhaust[J]. Chin J Catal,2018,39(4):800−809. doi: 10.1016/S1872-2067(18)63013-X
    [106] YU T, WANG J, SHEN M Q, LI W. NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading[J]. Catal Sci Technol,2013,3(12):3234−3241. doi: 10.1039/c3cy00453h
    [107] XIN Y, ZHANG N N, WANG X, LI Q, MA X C, QI Y X, ZHENG L R, ANDERSON J A, ZHANG Z L. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Catal Today,2019,332(1):35−41.
    [108] WANG L, LI W, SCHMIEG S J, WENG D. Role of Brönsted acidity in NH3 selective catalytic reduction reaction on Cu/SAPO-34 catalysts[J]. J Catal,2015,324(5):98−106.
    [109] BRANDENBERGER S, KRCHER O, WOKAUN A, TISSLER A, ALTHOFF R. The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. J Catal,2009,268(2):297−306. doi: 10.1016/j.jcat.2009.09.028
    [110] RUGGERI M P, SELLERI T, COLOMBO M, NOVA I, TRONCONI E. Identification of nitrites/HONO as primary products of NO oxidation over Fe-ZSM-5 and their role in the Standard SCR mechanism: A chemical trapping study[J]. J Catal,2014,311(1):266−270.
    [111] TYRSTED C, BORFECCHIA E, BERLIER G, LOMACHENKO K A, LAMBERTI C, BORDIGA S, JANSSENS T V W, FALSIG H, BEATO P, PUIG-MOLINA A. Nitrate-nitrite equilibrium in the reaction of NO with a Cu-CHA catalyst for NH3-SCR[J]. Catal Sci Technol,2016,6(23):8314−8324. doi: 10.1039/C6CY01820C
    [112] MA L, CHENG Y S, CAVATAIO G, MCCABE R W, FU L X, LI J H. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B: Environ,2014,156-157(2):428−437.
    [113] GUNTER T, CARVALHO H W, DORONKIN D E, SHEPPARD T, GLATZEL P, ATKINS A J, RUDOLPH J, JACOB C R, CASAPU M, GRUNWALDT J D. Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13[J]. Chem Commun (Camb),2015,51(44):9227−9230. doi: 10.1039/C5CC01758K
    [114] GAO F, KWAK J H, SZANYI J, PEDEN C H F. Current understanding of Cu-Exchanged chabazite molecular sieves for use as commercial diesel rngine DeNOx catalysts[J]. Top Catal,2013,56(15/17):1441−1459.
    [115] PAOLUCCI C, DI IORIO J R, RIBEIRO F H, GOUNDER R, SCHNEIDER W F. Catalysis science of NOx selective catalytic reduction with ammonia over Cu-SSZ-13 and Cu-SAPO-34[J]. Adv Catal,2016,59(1):1−107.
    [116] MAO Y, WANG Z Y, WANG H F, HU P. Understanding catalytic reactions over zeolites: A density functional theory study of selective catalytic reduction of NOx by NH3 over Cu-SAPO-34[J]. ACS Catal,2016,6(11):7882−7891. doi: 10.1021/acscatal.6b01449
    [117] CHRISTOPHER P, VERMA A A, BATES S A, KISPERSKY V F, MILLER J T, RAJAMANI G, W NICHOLAS D, RIBEIRO F H, SCHNEIDER W F. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13[J]. Angew Chem,2014,53(44):11828−11833. doi: 10.1002/anie.201407030
    [118] PAOLUCCI C, PAREKH A A, KHURANA I, DI IORIO J R, LI H, CABALLERO J D A, SHIH A J. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. J Am Chem Soc,2016,138(18):6028−6048.
    [119] GAO F, WALTER E D, KARP E M, LUO J Y, TONKYN R G, KWAK J H, SZANYI J, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal,2013,300(2):20−29.
    [120] WANG Y Y, JI X F, MENG H, QU L D, WU X. Fabrication of high-silica Cu/ZSM-5 with confinement encapsulated Cu-based active species for NH3-SCR[J]. Catal Commun,2020,138(2):105969.
    [121] IWASAKI M, YAMAZAKI K, BANNO K, SHINJOH H. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods: Relationships between active Fe sites and NH3-SCR performance[J]. J Catal,2008,260(2):205−216. doi: 10.1016/j.jcat.2008.10.009
    [122] MIHAI O, WIDYASTUTI C R, ANDONOVA S, KAMASAMUDRAM K, LI J H, JOSHI S Y, CURRIER N W, YEZERETS A, OLSSON L. The effect of Cu-loading on different reactions involved in NH3-SCR over Cu-BEA catalysts[J]. J Catal,2014,311(1):170−181.
    [123] MEDROS F G, ELDRIDGE J W, KITTRELL J R. Dual-catalyst system to broaden the window of operability in the reduction of NOx with ammonia[J]. IEEE Trans Energy Convers,1989,28(8):1171−1176.
    [124] ANDERSSON L, BRANDIN J, ODENBRAND C. Selective catalytic reduction of NOx over acid-leached mordenite catalysts[J]. Catal Today,1989,4(2):173−185. doi: 10.1016/0920-5861(89)85049-7
    [125] HAN J, BIN G, HE L, ZHEN H. Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts: Influence of the Si/Al ratio on the activity and hydrothermal properties[J]. Fuel,2019,255(2):1−17.
    [126] MING S J, CHEN Z, FAN C, PANG L, GUO W, ALBERT K B, LIU P, LI T. The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR[J]. Appl Catal A: Gen,2018,559(1):47−56.
    [127] DELAHAY G, KIEGER S, TANCHOUX N, TRENS P, COQ B. Kinetics of the selective catalytic reduction of NO by NH3 on a Cu-faujasite catalyst[J]. Appl Catal B: Environ,2004,52(4):251−257. doi: 10.1016/j.apcatb.2004.04.008
    [128] SHIH A J, KHURANA I, LI H, GONZLEZ J, KUMAR A, PAOLUCCI C, LARDINOIS T M, JONES C B, ALBARRACIN CABALLERO J D, KAMASAMUDRAM K, YEZERETS A, DELGASS W N, MILLER J T, VILLA A L, SCHNEIDER W F, GOUNDER R, RIBEIRO F H. Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction[J]. Appl Catal A: Gen,2019,574:122−131.
    [129] ZHENG W, CHEN J L, GUO L, ZHANG W B, ZHAO H R, WU X Q. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. J Fuel Chem Technol,2020,48(10):1193−1207. doi: 10.1016/S1872-5813(20)30081-5
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  288
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-07
  • 网络出版日期:  2021-04-19
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回