留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤直接液化残渣改性沥青胶浆性能研究

季节 徐新强 许鹰 王哲 王佳妮

季节, 徐新强, 许鹰, 王哲, 王佳妮. 煤直接液化残渣改性沥青胶浆性能研究[J]. 燃料化学学报(中英文), 2021, 49(8): 1095-1101. doi: 10.1016/S1872-5813(21)60081-6
引用本文: 季节, 徐新强, 许鹰, 王哲, 王佳妮. 煤直接液化残渣改性沥青胶浆性能研究[J]. 燃料化学学报(中英文), 2021, 49(8): 1095-1101. doi: 10.1016/S1872-5813(21)60081-6
JI Jie, XU Xin-qiang, XU Ying, WANG Zhe, WANG Jia-ni. Research on performance of direct coal liquefaction residue modified asphalt mortar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1095-1101. doi: 10.1016/S1872-5813(21)60081-6
Citation: JI Jie, XU Xin-qiang, XU Ying, WANG Zhe, WANG Jia-ni. Research on performance of direct coal liquefaction residue modified asphalt mortar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1095-1101. doi: 10.1016/S1872-5813(21)60081-6

煤直接液化残渣改性沥青胶浆性能研究

doi: 10.1016/S1872-5813(21)60081-6
基金项目: 国家自然科学基金(51778038,52078025),北京市自然基金委-北京市教委联合资助项目(KZ201910016017),中国公路工程咨询集团有限公司开放性课题(YFZX-2019-06),长江学者和创新团队发展计划资助项目(IRT-17R06)和北京建筑大学研究生创新项目(PG2021005)资助
详细信息
    通讯作者:

    E-mail: jijie@bucea.edu.cn

  • 中图分类号: U414

Research on performance of direct coal liquefaction residue modified asphalt mortar

Funds: The project was supported by the National Natural Science Foundation of China (51778038, 52078025), Beijing Natural Science Foundation Committee-Beijing Municipal Education Commission (KZ201910016017), China Highway Engineering Consulting Corporation (YFZX-2019-06), Program for Changjiang Scholars and Innovative Research Team in University (IRT-17R06), BUCEA Post Graduate Innovation Project (PG2021005)
  • 摘要: 为了研究煤直接液化残渣(Direct Coal Liquefaction Residue,DCLR)改性沥青胶浆的性能,制备不同DCLR掺量和粉胶比(Filler-Asphalt ratio, FA)的DCLR改性沥青胶浆。采用动态剪切流变仪与弯曲梁流变仪对胶浆的性能进行测试,并利用方差分析法分析了单一因素(DCLR掺量、温度、FA)及因素间耦合作用对胶浆性能的影响。结果表明,DCLR和矿粉的加入均能显著提高胶浆的高温性能,但对其低温及疲劳性能会造成较大的损伤。平衡DCLR掺量和FA对胶浆性能的综合影响,得出最佳DCLR掺量为10%,最佳FA为1.0。除此之外,单一因素(DCLR掺量、温度、FA)及因素间耦合作用对胶浆的性能均有着显著的影响,相对来说,因素间耦合作用对胶浆性能的影响明显小于单一因素对胶浆性能造成的影响。
  • FIG. 834.  FIG. 834.

    FIG. 834.  FIG. 834.

    图  1  DCLR改性沥青胶浆制备流程示意图

    Figure  1  Preparation process of DCLR modified asphalt mortar

    图  2  不同温度下胶浆${G^*}/{\rm{sin}}\delta $值随粉胶比和DCLR掺量的变化

    Figure  2  Variation of ${G^*}/{\rm{sin}}\delta $ value of asphalt mortar with FA and DCLR content at different temperatures

    图  3  不同温度下胶浆$m - $值和$S$值随粉胶比和DCLR掺量的变化

    Figure  3  Variation of $m - $value and $S$ value of asphalt mortar with FA and DCLR content at different temperatures

    图  4  不同DCLR掺量下胶浆${G^*} \cdot {\rm{sin}}\delta $值随粉胶比和温度的变化

    Figure  4  Variation of ${G^*} \cdot {\rm{sin}}\delta $ value of asphalt mortar with FA and temperatures at different DCLR contents

    图  5  典型温度下胶浆${G^*}/{\rm{sin}}\delta $值在RTFOT前后的变化

    Figure  5  Change of ${G^*}/{\rm{sin}}\delta $ value at typical temperature before and after RTFOT

    图  6  DCLR改性沥青胶浆高温域临界破坏温度

    Figure  6  Critical failure temperature of DCLR modified asphalt mortar at high temperature domain

    (a): Before RTFOT; (b): After RTFOT

    图  7  DCLR改性沥青胶浆低温域临界破坏温度

    Figure  7  Critical failure temperature of DCLR modified asphalt mortar at low temperature domain

    (a): m−value; (b): S value

    图  8  DCLR改性沥青胶浆中温域临界破坏温度

    Figure  8  Critical failure temperature of DCLR modified asphalt mortar at medium temperature domain

    图  9  DCLR改性沥青胶浆性能指标方差分析F

    Figure  9  F value of variance analysis of DCLR modified asphalt mortar performance index

    表  1  DCLR性能

    Table  1  Properties of DCLR

    Items25 ℃ density/
    (g·cm−3)
    Softening point/
    25 ℃ penetration
    (0.1 mm)
    10 ℃ ductility/
    cm
    Ash content/
    %
    Test results1.231702216.2
    下载: 导出CSV

    表  2  SK-90沥青性能

    Table  2  Properties of SK-90 asphalt

    Items25 ℃ penetration
    (0.1 mm)
    Softening point/
    10 ℃ ductility/
    cm
    60 ℃ viscosity/
    (Pa·s)
    25 ℃ density/
    (g·cm−3)
    Residue after RTFOT
    loss of
    mass/%
    residual
    penetration
    ratio/%
    residual
    ductility/cm
    Test results8151.851218.41.032 ± 0.3646.5
    Requirements60−80 ≥ 46 ≥ 20 ≥ 180 ± 0.8 ≥ 61 ≥ 6
    下载: 导出CSV

    表  3  矿粉性能

    Table  3  Properties of filler

    ItemsApparent density/
    (g·cm−3)
    Water content/%Hydrophilic
    coefficient
    Plasticity
    Index/%
    Granularity range/%
    < 0.6 mm < 0.15 mm < 0.075 mm
    Test results2.7320.50.712.810099.7588.56
    Requirements ≥ 2.5 ≤ 1 ≤ 1 ≤ 410090−10075−100
    下载: 导出CSV

    表  4  DCLR的环保性指标

    Table  4  Environmental properties of DCLR

    ItemspH valueContent of reactive hydrogen
    sulfide gas/(mg·kg−1)
    Mass concentration of hazard components in leach solution/(mg·L−1)
    non-volatility organic compounds:
    benzopyrene, etc.
    volatile organic compounds:
    benzene, toluene, etc.
    Test results6.92336 < 1 × 10−4 < 1 × 10−3
    Requirements6−8 ≤ 500 ≤ 0.01 ≤ 0.1
    下载: 导出CSV

    表  5  DCLR改性沥青胶浆性能指标方差分析P

    Table  5  P value of variance analysis of DCLR modified asphalt mortar performance index

    FactorP value
    ${G^*}/{\rm{sin}}\delta $
    before
    RTFOT
    ${G^*}/{\rm{sin}}\delta $
    after
    RTFOT
    $m - $valueS
    value
    ${G^*} \cdot {\rm{sin}}\delta $
    Temperature0.0000.0000.0000.0000.000
    DCLR content0.0000.0000.0000.0000.000
    FA0.0000.0000.0000.0000.000
    Temperature*DCLR
    content
    0.0000.0000.0000.0020.000
    Temperature*FA0.0000.0000.0000.0000.000
    DCLR content*FA0.0010.0040.0160.0000.000
    下载: 导出CSV
  • [1] 李军, 杨建丽, 刘振宇. 煤直接液化残渣的热解特性研究[J]. 燃料化学学报,2010,38(4):385−390. doi: 10.3969/j.issn.0253-2409.2010.04.001

    LI Jun, YANG Jian-li, LIU Zhen-yu. Pyrolysis behavior of direct coal liquefaction residues[J]. J Fuel Chem Technol,2010,38(4):385−390. doi: 10.3969/j.issn.0253-2409.2010.04.001
    [2] 王寨霞, 杨建丽, 刘振宇. 煤直接液化残渣对道路沥青改性作用的初步评价[J]. 燃料化学学报,2007,35(1):109−112. doi: 10.3969/j.issn.0253-2409.2007.01.021

    WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary study on direct coal liquefaction residue as paving asphalt modifier[J]. J Fuel Chem Technol,2007,35(1):109−112. doi: 10.3969/j.issn.0253-2409.2007.01.021
    [3] XU G, ZHONG J, SHI X M. Influence of graphene oxide in a chemically activated fly ash[J]. Fuel,2018,226:644−657. doi: 10.1016/j.fuel.2018.04.033
    [4] 季节, 石越峰, 索智, 徐世法, 杨松, 李鹏飞. DCLR与TLA共混改性沥青的性能对比[J]. 燃料化学学报,2015,43(9):1061−1067. doi: 10.3969/j.issn.0253-2409.2015.09.006

    JI Jie, SHI Yue-feng, SUO Zhi, XU Shi-fa, YANG Song, LI Peng-fei. Comparison on properties of modified asphalt blended with DCLR and TLA[J]. J Fuel Chem Technol,2015,43(9):1061−1067. doi: 10.3969/j.issn.0253-2409.2015.09.006
    [5] 季节, 李鹏飞, 索智, 石越峰, 许鹰, 徐世法. DCLR掺量和粉胶比对沥青胶浆性能的影响分析[J]. 重庆交通大学学报(自然科学版),2016,35(2):35−39+178.

    JI Jie, LI Peng-fei, SUO Zhi, SHI Yue-feng, XU Ying, XU Shi-fa. Analysis of the properties of asphalt mortar affected by DCLR content and filler-asphalt ratio[J]. J Chongqing Jiaotong Univ (Nat Sci Ed),2016,35(2):35−39+178.
    [6] JI J, WANG Z, ZHANG R, WEI J M, SUO Z, YOU Z P, HU J P. Rutting resistance of direct coal liquefaction residue (DCLR) modified asphalt mixture under variable loads over a wide temperature range[J]. Constr Build Mater,2020,257:119489.
    [7] 李辉. 煤直接液化残渣改性沥青的低温特性研究[D]. 北京: 北京建筑大学, 2020.

    LI Hui. Study on low-temperature performance of direct coal liquefaction residue modified asphalt[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
    [8] 季节, 苑志凯, 魏建明, 索智, 许鹰, 李辉, 石越峰. 煤直接液化残渣改性沥青低温性能的改进[J]. 中国石油大学学报(自然科学版),2019,43(4):166−173.

    JI Jie, YUAN Zhi-kai, WEI Jian-ming, SUO Zhi, XU Ying, LI Hui, SHI Yue-feng. Improvements of low-temperature properties of direct coal liquefaction residue modified asphalt[J]. J Chin Univ Pet (Nat Sci Ed),2019,43(4):166−173.
    [9] 翟旭刚, 陈博, 丁龙亭. ZnO对DCLR改性沥青抗永久变形及抗紫外老化性能影响[J]. 公路工程,2019,44(04):74−78.

    ZHAI Xu-gang, CHEN Bo, DING Long-ting. Influence of ZnO on Anti-permanent Deformation and Anti-UV Ageing Performances of DCLR Modified Asphalt[J]. Highway Eng,2019,44(04):74−78.
    [10] MOON K H, FALCHETTO A C, WANG D, RICCARDI C, WISTUBA M P. Mechanical performance of asphalt mortar containing hydrated lime and eafss at low and high temperatures[J]. Materials,2017,10:743. doi: 10.3390/ma10070743
    [11] 牛永宏, 唐德密. 粉胶比对SBS改性沥青胶浆力学性能的影响分析[J]. 施工技术,2017,46(15):88−92.

    NIU Yong-hong, TANG De-mi. Effect of filler-bitumen ratio on mechanical properties of SBS modified asphalt mucilage[J]. Constr Technol,2017,46(15):88−92.
    [12] QIU H S, TAN X M, SHI S, ZHANG H. Influence of filler-bitumen ratio on performance of modified asphalt mortar by additive[J]. J Mod Transp,2013,21(1):40−46. doi: 10.1007/s40534-013-0002-2
    [13] 谢祥兵, 李广慧, 李晗, 童申家, 耿九光. 紫外光照下的沥青胶浆材料性能评价[J]. 公路交通科技,2020,37(4):15−23.

    XIE Xiang-bing, LI Guang-hui, LI Han, TONG Shen-jia, GENG Jiu-guang. Evaluation of performance of asphalt mortar material under ultraviolet irradiation[J]. J Highw Transp Res Dev,2020,37(4):15−23.
    [14] JTG E42—2005, 公路工程集料试验规程[S].

    JTG E42—2005, Test Methods of Aggregate for Highway Engineering[S].
    [15] JTG E20—2011, 公路工程沥青及沥青混合料试验规程[S].

    JTG E20—2011, Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering[S].
    [16] GB/T 15555.12—1995, 固体废物 腐蚀性测定 玻璃电极法[S].

    (GB/T 15555.12—1995, Solid waste-Glass electrode test-Method of corrosively[S]).
    [17] GB 5085.5—2007, 危险废物鉴别标准 反应性鉴别[S].

    GB 5085.5—2007, Identification standards for hazardous wastes Identification for reactivity[S].
    [18] GB 5085.3—2007, 危险废物鉴别标准 浸出毒性鉴别[S].

    GB 5085.3—2007, Identification standards for hazardous wastes-Identification for extraction toxicity[S].
    [19] GB 5085.1—2007, 危险废物鉴别标准 腐蚀性鉴别[S].

    GB 5085.1—2007, Identification standards for hazardous wastes-Identification for corrosivity[S].
    [20] 刘红瑛, 徐金枝, 张振兴, 常睿, 郝培文. 多聚磷酸改性沥青高温评价性能指标研究[J]. 华南理工大学学报(自然科学版),2016,44(8):98−105.

    LIU Hong-ying, XU Jin-zhi, ZHANG Zhen-xing, CHANG Rui, HAO Pei-wen. Investigation into high temperature evaluation indexes of polyphosphoric acid-modified asphalt[J]. J South China Univ Technol (Nat Sci Ed),2016,44(8):98−105.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  67
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-02-14
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回