留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of Ni-Fe alloy foam for oxygen evolution reaction

YANG Xiao-meng LI Zuo-peng QIN Jun WU Mei-xia LIU Jia-li GUO Yong MA Yan-qing FENG Feng

杨肖萌, 李作鹏, 秦君, 武美霞, 刘佳丽, 郭永, 马彦青, 冯锋. Ni-Fe合金泡沫的制备及电解水析氧性能研究[J]. 燃料化学学报(中英文), 2021, 49(6): 827-834. doi: 10.1016/S1872-5813(21)60084-1
引用本文: 杨肖萌, 李作鹏, 秦君, 武美霞, 刘佳丽, 郭永, 马彦青, 冯锋. Ni-Fe合金泡沫的制备及电解水析氧性能研究[J]. 燃料化学学报(中英文), 2021, 49(6): 827-834. doi: 10.1016/S1872-5813(21)60084-1
YANG Xiao-meng, LI Zuo-peng, QIN Jun, WU Mei-xia, LIU Jia-li, GUO Yong, MA Yan-qing, FENG Feng. Preparation of Ni-Fe alloy foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 827-834. doi: 10.1016/S1872-5813(21)60084-1
Citation: YANG Xiao-meng, LI Zuo-peng, QIN Jun, WU Mei-xia, LIU Jia-li, GUO Yong, MA Yan-qing, FENG Feng. Preparation of Ni-Fe alloy foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 827-834. doi: 10.1016/S1872-5813(21)60084-1

Ni-Fe合金泡沫的制备及电解水析氧性能研究

doi: 10.1016/S1872-5813(21)60084-1
详细信息
  • 中图分类号: O643.36; TQ116.2

Preparation of Ni-Fe alloy foam for oxygen evolution reaction

Funds: The project was supported by Natural Science Foundation of Shanxi (201701D121016, 201901D111310), the Science and Technology Innovation Project of Shanxi Province University (2020L0478) and Natural Science Foundation of Datong (201819, 2019160)
More Information
  • 摘要: NiFe羟基氧化物及其氢氧化物是一种有效的、含量丰富的且廉价的析氧反应催化剂。然而,这类催化剂有着不可避免的缺陷—易脱落,严重影响了它的长期稳定性,因而阻碍了其工业应用;同时,导电性不高导致了其在析氧反应时较高的过电位。本文采用共电沉积法和模板去除法,利用聚氨酯海绵作为模板,电沉积了不同Fe含量的NiFe合金泡沫用于催化析氧反应,并通过扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分别表征了NiFe合金泡沫的物理性质,表明催化剂中Ni和Fe元素的存在及其分布均匀,形成了多孔NiFe合金。通过循环伏安法(CV)、线性扫描伏安法(LSV)、电化学阻抗谱法(EIS)、I-t等测试了其OER性能。含铁量为30%的NiFe合金泡沫在过电位为292 mV即可产生10 mA/cm2的电流密度,Tafel斜率为126.12 mV/decade,且具有良好的长期稳定性。由于没有任何复杂的电极制备方法和黏合剂,本文所研究的NiFe合金泡沫非常适用于作为工业碱性介质中电解水的阳极材料。
  • FIG. 727.  FIG. 727.

    FIG. 727. 

    Figure  1  Synthesis process for NiFe alloy foam

    Figure  2  Morphology of Ni-Fe alloy foam with different Fe content

    Figure  3  Scanning electron microscopy (SEM) micrograph for pure Ni and NiFe alloy foam with different Fe content (20%, 30%, 50%, 75%, 100%) at different magnification (2 μm and 20 μm)

    Figure  4  SEM((a)−(c)), mapping (d) and EDS((e)−(g)) for NiFe alloy foam with 30% Fe content

    Figure  5  XRD patterns of Ni-Fe alloy foam with different Fe content

    Figure  6  LSV curves ((a), (c)) and their Tafel curves ((b), (d)) of NiFe alloy foam with varied Fe content and pure Ni

    Figure  7  CVs of NiFe alloy foam with 30% Fe content at different scan rate (a); Linear fitting of the capacitance currents versus CVs scan rates (b); EIS of Ni-Fe alloy foam with varied Fe content (c); I-t curves of Ni-Fe alloy foam with 30% Fe content at 0.443V(vs.RHE)(d)

  • [1] ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energ Combust,2010,36(3):307−326. doi: 10.1016/j.pecs.2009.11.002
    [2] FENG L, YU G T, WU Y Y, LI G D, LI H, SUN Y H, ASEFA T, CHEN W, ZOU X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J Am Chem Soc,2015,137(44):14023−14026. doi: 10.1021/jacs.5b08186
    [3] GU Y, CHEN S, REN J, JIA Y A, CHRN C M, KOMARNENI S, YANG D J, YAO X D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano,2018,12(1):245−253. doi: 10.1021/acsnano.7b05971
    [4] KOPER M T M. Hydrogen electrocatalysis: a basic solution[J]. Nat Chem,2013,5:255−256. doi: 10.1038/nchem.1600
    [5] ZHENG Y, JIAO Y, ZHU Y, CAI Q, VASILEFF A, LI L H, HAN Y, CHEN Y, QIAO S Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. J Am Chem Soc,2017,139(9):3336−3339. doi: 10.1021/jacs.6b13100
    [6] WU M, GUO B, NIE A, LIU R. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. J Colloid Interface Sci,2020,561:585−592. doi: 10.1016/j.jcis.2019.11.033
    [7] PETKUCHEVA E, BORISOV G, LEFTEREFTEROVA E, HEISS J, SCHNAKENBERG U, SLAVCHEVA E. Gold-supported magnetron sputtered Ir thin films as OER catalysts for costefficient water electrolysis[J]. Int J Hydrog Energy,2018,43(35):16905−16912. doi: 10.1016/j.ijhydene.2018.01.188
    [8] FORGIE R, BUGOSH G, NEYERLIN K C, LIU Z, STRASSER P. Bimetallic Ru electrocatalysts for the oer and electrolytic water splitting in acidic media[J]. Electrochem Solid-State Lett,2010,13(4):B36−B39.
    [9] NONG H N, GAN L, WILLINGER E, TESCHNER D, STRASSER P. IrOx core-shell nanocatalysts for cost- and energyefficient electrochemical water splitting[J]. Chem Sci,2014,5(8):2955−2963. doi: 10.1039/C4SC01065E
    [10] GAO W, XIA Z, CAO F, HO J C, JIANG Z, QU Y. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded[J]. Adv Funct Mater,2018,28(11):1706056.
    [11] JIN H, WANG J, SU D, WEI Z, PANG Z, WANG Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. J Am Chem Soc,2015,137(7):2688−2694. doi: 10.1021/ja5127165
    [12] PICKRAHN K L, PARK S W, GORLIN Y, LEE H B R, JARAMILLO T F, BENT S F. Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions[J]. Adv Eng Mater,2012,2(10):1269−1277. doi: 10.1002/aenm.201200230
    [13] ZHAO Z, LAMOUREUX P S, KULKARNI A, BAJDICH M. Trends in oxygen electrocatalysis of 3d-Layered (oxy)(hydro)oxides[J]. Chem Electro Chem,2019,11(15):3423−3431.
    [14] QIN Y, WANG F, SHANG J, IQBAL M, HAN A, SUN X, XU H, LIU J. Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction[J]. J Energy Chem,2020,43:104−107. doi: 10.1016/j.jechem.2019.08.014
    [15] MAJHI K C, KARFA P, MADHURI R. Bimetallic transition metal chalcogenide nanowire array: An effective catalyst for overall water splitting[J]. Electrochim Acta,2019,318:901−910. doi: 10.1016/j.electacta.2019.06.106
    [16] DU Y, KHAN S, ZHANG X, YU G, LIU R, ZHENG B, NADIMICHERLA R, WU D, FU R. In-situ preparation of porous carbon nanosheets loaded with metal chalcogenides for a superior oxygen evolution reaction[J]. Carbon,2019,149:144−151. doi: 10.1016/j.carbon.2019.04.048
    [17] ZHAO D, SHAO Q, ZHANG Y, HUANG X. N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting[J]. Nanoscale,2018,10(48):22787−22791. doi: 10.1039/C8NR07756H
    [18] SINGH R N, SINGH J P, SINGH A. Electrocatalytic properties of new spinel-type MMoO4 (M = Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions[J]. Int J Hydrog Energy,2008,33(16):4260−4264. doi: 10.1016/j.ijhydene.2008.06.008
    [19] MAY K J, CARLTON C E, STOERZINGER K A, RISCH M, SUNTIVICH J, LEE Y L, GRIMAUD A, SHAO-HORN Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts[J]. J Phys Chem Lett,2012,3(22):3264−3270. doi: 10.1021/jz301414z
    [20] FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M J, SOKARAS D, WENG T C, ALONSO-MORI R, DAVIS R C, BARGER J R, NØRSKOV J K, NILSSON A, BELL A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J Am Chem Soc,2015,137(3):1305−1313. doi: 10.1021/ja511559d
    [21] KLAUS S, CAI Y, LOUIE M W, TROTOCHAUD L, BELL A T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity[J]. J Phys Chem C,2015,119(13):7243−7254. doi: 10.1021/acs.jpcc.5b00105
    [22] LYU P, NATCHTIGALL P. Systematic computational investigation of an Ni3Fe catalyst for the OER[J]. Catal Today,2020,345:220−226. doi: 10.1016/j.cattod.2019.09.049
    [23] MA Y, DAI X, LIU M, YONG J, QIAO H, JIN A, LI Z, HUANG X, WWANG H, ZHANG X. Strongly coupled FeNi alloys/NiFe2O4@carbonitride layers-assembled microboxes for enhanced oxygen evolution reaction[J]. ACS Appl Mater Interfaces,2016,8(50):34396−34404. doi: 10.1021/acsami.6b11821
    [24] LI W, HU Q, LIU Y, ZHANG M, WANG J, HAN X, ZHONG C, HU W, DENG Y. Powder metallurgy synthesis of porous Ni-Fe alloy for oxygen evolution reaction and overall water splitting[J]. J Mater Sci Technol,2019,37:154−160.
    [25] ULLAL Y, HEGDE A C. Electrodeposition and electro-catalytic study of nanocrystalline Ni-Fe alloy[J]. Int J Hydrog Energy,2014,39:10485−10492. doi: 10.1016/j.ijhydene.2014.05.016
    [26] HOU Y, CUI S M, WEN Z H, GUO X R, FENG X L, CHRN J H. Strongly coupled 3D hybrids of N-doped porous carbon Nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis[J]. Small,2015,11(44):5940−5948. doi: 10.1002/smll.201502297
    [27] SHAH S A, JI Z, SHEN X, YUE X, ZHU G, XU K, YUAN A, ULLAH N, ZHU J, SONG P, LI X. Thermal synthesis of FeNi@nitrogen-doped graphene dispersed on nitrogen-doped carbon matrix as an excellent electrocatalyst for oxygen evolution reaction[J]. ACS Appl Energy Mater,2019,2(6):4075−4083. doi: 10.1021/acsaem.9b00199
    [28] WANG C, SUI Y, XU M, LIU C, XIAO G, ZOU B. Synthesis of Ni-Ir nanocages with improved electrocatalytic performance for the oxygen evolution reaction[J]. ACS Sustainable Chem Eng,2017,5(11):9787−9792. doi: 10.1021/acssuschemeng.7b01628
    [29] XIANG D, BO X, GAO X, ZHANG C, DU C, ZHENG F, ZHUANG Z, LI P, ZHU L, CHEN W. Novel one-step synthesis of core@shell iron-nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis[J]. J Power Sources,2019,438:226988. doi: 10.1016/j.jpowsour.2019.226988
    [30] LIU P S, LIANG K M. Preparation and corresponding structure of nickel foam[J]. Mater Sci Technol,2000,16:575−578. doi: 10.1179/026708300101508108
    [31] JIN J, XIA J, QIAN X, WU T, LING H, HU A, LI M, HANG T. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam[J]. Electrochim Acta,2019,299:567−574. doi: 10.1016/j.electacta.2019.01.026
  • 加载中
图(8)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  86
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-04-19
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回