留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论的CO2对NO异相还原影响的机理研究

周赛 刘虎 于鹏飞 车得福

周赛, 刘虎, 于鹏飞, 车得福. 基于密度泛函理论的CO2对NO异相还原影响的机理研究[J]. 燃料化学学报(中英文), 2021, 49(9): 1231-1238. doi: 10.1016/S1872-5813(21)60088-9
引用本文: 周赛, 刘虎, 于鹏飞, 车得福. 基于密度泛函理论的CO2对NO异相还原影响的机理研究[J]. 燃料化学学报(中英文), 2021, 49(9): 1231-1238. doi: 10.1016/S1872-5813(21)60088-9
ZHOU Sai, LIU Hu, YU Peng-fei, CHE De-fu. Application of density functional theory on the NO-char heterogeneous reduction mechanism in the presence of CO2[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1231-1238. doi: 10.1016/S1872-5813(21)60088-9
Citation: ZHOU Sai, LIU Hu, YU Peng-fei, CHE De-fu. Application of density functional theory on the NO-char heterogeneous reduction mechanism in the presence of CO2[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1231-1238. doi: 10.1016/S1872-5813(21)60088-9

基于密度泛函理论的CO2对NO异相还原影响的机理研究

doi: 10.1016/S1872-5813(21)60088-9
基金项目: 中国博士后科学基金(2018M633507)和陕西省自然科学基础研究计划(2020JQ-063)资助
详细信息
    通讯作者:

    Tel:15389251896,E-mail:epeliuhu@mail.xjtu.edu.cn

  • 中图分类号: TQ534.9

Application of density functional theory on the NO-char heterogeneous reduction mechanism in the presence of CO2

Funds: The project was supported by the Postdoctoral Research Foundation of China (2018M633507) and Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-063)
  • 摘要: 为深入理解CO2对NO异相还原的影响,本研究基于密度泛函理论,对CO2参与下的煤焦-NO异相还原反应机理进行研究,并选取armchair苯环模型模拟焦炭表面。结构优化采用B3LYP-D3/6-31G(d)方法,单点能计算采用B3LYP-D3/def2-TZVP方法。研究表明,CO2吸附后形成的羰基与吸附态NO反应生成CO2,继而CO2脱附为后续NO吸附及N2脱附提供邻近的碳活性位点。热力学研究表明,无CO2参与条件下,反应放热853.9 kJ/mol,决速步能垒为297.0 kJ/mol;CO2参与条件下,反应放出593.7 kJ/mol的热量,决速步能垒为214.1 kJ/mol。动力学研究表明,在298.15–1800 K的温度下,CO2参与条件下的反应速率常数大于无CO2参与条件下的反应速率常数。综合热力学和动力学研究结果发现,CO2对NO的异相还原反应具有促进作用。
  • FIG. 908.  FIG. 908.

    FIG. 908.  FIG. 908.

    图  1  Armchair焦炭模型

    Figure  1  Armchair edge model

    图  2  煤焦-NO异相还原路径的反应势能面

    Figure  2  Potential energy surface of NO heterogeneous reduction

    图  3  煤焦-NO异相还原反应的各驻点结构(键长:Å)

    Figure  3  Structures of stagnation points of NO heterogeneous reduction (bond length: Å)

    图  4  CO2吸附构型与能量

    Figure  4  Adsorption configuration and energy of CO2

    图  5  CO2参与NO异相还原路径的反应势能面

    Figure  5  Potential energy surface of NO heterogeneous reduction with the participation of CO2

    图  6  CO2参与NO异相还原反应的各驻点结构(键长:Å)

    Figure  6  Structures of stagnation points of NO heterogeneous reduction with the participation of CO2 (bond length: Å)

    图  7  经典过渡态理论得到的反应速率常数

    Figure  7  Rate constant k calculated from cTST

    表  1  拟合所得动力学反应参数

    Table  1  Fitted kinetic parameters of Arrhenius expressions

    ReactionA/s−1Ea/(kJ·mol−1
    IM4→IM5+CO22.06 × 1015228.8
    IM3→IM41.83 × 1015311.5
    下载: 导出CSV
  • [1] 毛洪钧, 李悦宁, 林应超, 王婷, 李维尊, 鞠美庭, 朱复东. 生物质锅炉氮氧化物排放控制技术研究进展[J]. 工程科学学报,2019,41(1):4−14.

    MAO Hong-jun, LI Yue-ning, LIN Ying-chao, WANG Ting, LI Wei-zun, JU Mei-ting, ZHU Fu-dong. Overview of advances in emission control technologies for nitric oxides from biomass boilers[J]. Chin J Eng,2019,41(1):4−14.
    [2] BURCH T E, CHEN W, LESTER T W, STERLING A M. Interaction of fuel nitrogen with nitric oxide during reburning with coal[J]. Combust Flame,1994,98(4):391−401. doi: 10.1016/0010-2180(94)90177-5
    [3] CHEN W, LONG M. Effect of heterogeneous mechanisms during reburning of nitrogen oxide[J]. Fuel Energy Abstr,1997,42(7):1968−1976.
    [4] LIU H, HAMPARTSOUMIAN E, GIBBS B M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning[J]. Fuel,1997,76(11):985−993. doi: 10.1016/S0016-2361(97)00114-2
    [5] 张秀霞. 焦炭燃烧过程中氮转化机理与低NOx燃烧技术的开发[D]. 杭州: 浙江大学, 2012.

    ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012.
    [6] CHAMBRION P, ORIKASA H, SUZUKI T, KYOTANI T, TOMITA A. A study of the C-NO reaction by using isotopically labelled C and NO[J]. Fuel,1997,76(6):493−498. doi: 10.1016/S0016-2361(96)00224-4
    [7] ILLÁN-GÓMEZ M J, LINARES-SOLANO A, RADOVIC L R, DE LECEA C S-M. NO reduction by activated carbons. 7. some mechanistic aspects of uncatalyzed and catalyzed reaction[J]. Energy Fuels,1996,10(1):158−168. doi: 10.1021/ef950066t
    [8] PARK D-C, DAY S J, NELSON P F. Nitrogen release during reaction of coal char with O2, CO2, and H2O[J]. Proc Combust Inst,2005,30(2):2169−2175. doi: 10.1016/j.proci.2004.08.051
    [9] ZHAO Y J, FENG D D, LI B W, WANG P X, TAN H P, SUN S Z. Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-char interaction at high temperatures[J]. Energy,2019,174:519−525.
    [10] LIAO X J, SHAO J A, ZHANG S H, LI X P, CHEN H P. Effects of CO2 and CO on the reduction of NO over calcined limestone or char in oxy-fuel fluidized bed combustion[J]. IET Renew Power Gener,2019,13(10):1633−1640. doi: 10.1049/iet-rpg.2018.6277
    [11] 李相鹏, 张世红, 廖新杰, 杨海平, 陈汉平. CFB富氧燃烧中CO2对煤焦与NO还原作用的影响[J]. 工程热物理学报,2016,37(12):2703−2709.

    LI Xiang-peng, ZHANG Shi-hong, LIAO Xin-jie, YANG Hai-ping, CHEN Han-ping. Effect of CO2 on coal char-NO redcution process in CFB oxy–fuel combustion[J]. J Eng Thermo,2016,37(12):2703−2709.
    [12] 刘一, 李相鹏, 邵敬爱, 王贤华, 张世红, 陈汉平. CO2气氛下煤焦对NO还原作用的试验研究[J]. 电站系统工程,2015,31(6):10−12+6.

    LIU Yi, LI Xiang-peng, SHAO Jing-ai, WANG Xian-hua, ZHANG Shi-hong, CHEN Han-ping. Experimental investigation of char effect on NO reduction under CO2 atmosphere[J]. Power Syst Eng,2015,31(6):10−12+6.
    [13] AARNA I, SUUBERG E M. The role of carbon monoxide in the NO-carbon reaction[J]. Energy Fuels,1999,13(6):1145−1153. doi: 10.1021/ef9900278
    [14] SUUBERG E M, LILLY W D, AARNA I. Kinetics and mechanisms of NOx-char reduction. Quarterly technical progress report, August 1, 1995–October 31, 1995[R]. United States: Brown University, 1996.
    [15] 吕刚, 陆继东, 刘智湘, 薛锦添, 谢新华, 曾阔, 胡芝娟. 分解炉内不同CO2体积分数下的煤粉及煤焦还原NO特性[J]. 燃烧科学与技术,2012,18(1):50−55.

    LV Gang, LU Ji-dong, LIU Zhi-xiang, XUE Jin-tian, XIE Xin-hua, ZENG Kuo, HU Zhi-juan. NO reduction by coal and char at different CO2 concentrations in Cement Precalciner[J]. J Combust Sci Technol,2012,18(1):50−55.
    [16] 张永春, 张军. O2/CO2燃烧方式下煤焦−NO反应特性研究[J]. 热力发电,2015,44(07):12−17. doi: 10.3969/j.issn.1002-3364.2015.07.012

    ZHANG Yong-chun, ZHANG Jun. Characteristics of NO-char reaction in O2/CO2 atmosphere[J]. Therm Power Gener,2015,44(07):12−17. doi: 10.3969/j.issn.1002-3364.2015.07.012
    [17] KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B,1999,109:3434−3441.
    [18] MONTOYA A, TRUONG T N, SAROFIM A F. Application of density functional theory to the study of the reaction of NO with char-bound nitrogen during combustion[J]. J Phys Chem A,2000,104(36):8409−8417. doi: 10.1021/jp001045p
    [19] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 on the zigzag surface of graphite[J]. Combust Flame,2005,143(4):629−643. doi: 10.1016/j.combustflame.2005.08.026
    [20] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C,2007,111(14):5465−5473. doi: 10.1021/jp067363r
    [21] SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst,2011,33(2):1851−1858. doi: 10.1016/j.proci.2010.06.021
    [22] MONTOYA A, MONDRAGÓN F, TRUONG T N. CO2 adsorption on carbonaceous surfaces: A combined molecular modeling and experimental study[J]. ACS Div Fuel Chem, Prepr,2001,46:217−219.
    [23] MONTOYA A, MONDRAGÓN F, TRUONG T N. Formation of CO precursors during char gasification with O2, CO2 and H2O[J]. Fuel Process Technol,2002,77–78:125−130.
    [24] ROBERTS M J, EVERSON R C, DOMAZETIS G, NEOMAGUS H W J P, JONES J M, VAN SITTERT C G C E, OKOLO G N, VAN NIEKERK D, MATHEWS J P. Density functional theory molecular modelling and experimental particle kinetics for CO2-char gasification[J]. Carbon,2015,93:295−314. doi: 10.1016/j.carbon.2015.05.053
    [25] ZHU Z H, LU G Q, FINNERTY J, YANG R T. Electronic structure methods applied to gas–carbon reactions[J]. Carbon,2003,41(4):635−658. doi: 10.1016/S0008-6223(02)00380-9
    [26] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite selection of molecular system and model chemistry[J]. Carbon,1998,36(7):1061−1070.
    [27] JIAO A Y, ZHANG H, LIU J X, SHEN J, JIANG X M. The role of CO played in the nitric oxide heterogeneous reduction: A quantum chemistry study[J]. Energy,2017,141:1538−1546.
    [28] ZHANG H, JIANG X M, LIU J X. Updated effect of carbon monoxide on the interaction between NO and char bound nitrogen: A combined thermodynamic and kinetic study[J]. Combust Flame,2020,220:107−118. doi: 10.1016/j.combustflame.2020.06.032
    [29] 田向红. 焦炭氧化的密度泛函理论研究[D]. 郑州; 郑州大学, 2019.

    TIAN Xiang-hong. Study on coke oxidation with density functional theory[J]. Zhengzhou: Zhengzhou University, 2019.
    [30] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, FRISCH M J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623−11627. doi: 10.1021/j100096a001
    [31] ZHU Z H, FINNERTY J, LU G Q, YANG R T. A comparative study of carbon gasification with O2 and CO2 by density functional theory calculations[J]. Energy Fuels,2002,16(6):1359−1368. doi: 10.1021/ef0200020
    [32] ZHANG H, JIANG X M, LIU J X, SHEN J. Application of density functional theory to the nitric oxide heterogeneous reduction mechanism in the presence of hydroxyl and carbonyl groups[J]. Energ Convers Manage,2014,83:167−176.
    [33] GRIMME S, ANTONY J, EHRLICH S, KRIEG H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,132:154104.
    [34] 钟俊, 高正阳, 丁艺, 余岳溪, 杨维结. Zigzag煤焦表面异相还原N2O反应[J]. 煤炭学报,2017,42(11):3028−3034.

    ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on zigzag carbonaceous model[J]. J China Coal Soc,2017,42(11):3028−3034.
    [35] GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94(14):5523−5527. doi: 10.1021/j100377a021
    [36] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian 09 Rev. D. 01[M]. Wallingford, CT. 2009.
    [37] 傅献彩. 物理化学[M]. 5版. 北京: 高等教育出版社, 2005.

    FU Xian-cai. Physical Chemistry[M]. 5th ed. Beijing: Higher Education Press, 2005.
    [38] CHEN P, GU M Y, CHEN G, LIU F S, LIN Y Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel,2019,192(9):1682−1706.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  120
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回