留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FER分子筛Lewis酸中心对异丁烯催化转化的影响

杨佳宝 惠宇 秦玉才 张晓彤 王焕 宋丽娟

杨佳宝, 惠宇, 秦玉才, 张晓彤, 王焕, 宋丽娟. FER分子筛Lewis酸中心对异丁烯催化转化的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60089-0
引用本文: 杨佳宝, 惠宇, 秦玉才, 张晓彤, 王焕, 宋丽娟. FER分子筛Lewis酸中心对异丁烯催化转化的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60089-0
YANG Jia-bao, HUI Yu, QIN Yu-cai, ZHANG Xiao-tong, WANG Huan, SONG Li-juan. Effect of lewis acid sites of FER zeolite on catalytic transformation of isobutene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60089-0
Citation: YANG Jia-bao, HUI Yu, QIN Yu-cai, ZHANG Xiao-tong, WANG Huan, SONG Li-juan. Effect of lewis acid sites of FER zeolite on catalytic transformation of isobutene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60089-0

FER分子筛Lewis酸中心对异丁烯催化转化的影响

doi: 10.1016/S1872-5813(21)60089-0
基金项目: 国家自然科学基金(U20A20120,21902068)资助
详细信息
    作者简介:

    杨佳宝:Jiabao_Yang96@163.com

    通讯作者:

    E-mail: lsong56@263.net

  • 中图分类号: O643

Effect of lewis acid sites of FER zeolite on catalytic transformation of isobutene

Funds: The project was supported by the National Natural Science Foundation of China (U20A20120, 21902068)
  • 摘要: 采用不同浓度六氟硅酸铵(AHFS)对FER型分子筛进行同晶置换改性,制备了一系列具有不同酸类型、酸密度及可接近性等特征的改性FER分子筛样品,运用XRD、N2吸附-脱附等温线等方法对其织构性质进行表征,通过NH3-TPD和Py-FTIR关联改性FER分子筛的酸性质,并结合反应评价系统探究了改性FER分子筛酸中心与丁烯(1-丁烯、异丁烯)骨架异构化反应间的构效关系。结果表明,根据产物收率确定,以1-丁烯和异丁烯分别作为原料时其骨架异构化的最佳反应温度均为350 ℃,以异丁烯作为原料时副反应更为明显。在脱铝过程中,由于脱铝剂和分子筛中的非骨架铝羟基物种的相互作用,产生了强弱不同的两种新Lewis酸中心,在反应过程中上述两种Lewis酸中心促进了异丁烯齐聚-裂化反应的进行,进而降低了主反应的选择性。
  • 图  1  单分子反应路线机理图

    Figure  1  Mechanism diagram of single molecule reaction route

    图  2  双分子反应路线机理图

    Figure  2  Mechanism diagram of double molecule reaction route

    图  3  四种丁烯在不同温度下的热力学平衡图

    Figure  3  Thermodynamic equilibrium diagrams of four butenes at different temperatures

    图  4  不同反应温度产物中四种丁烯总含量对比

    Figure  4  Comparison of four butenes content in products at different reaction temperatures

    图  5  HZSM-35以及不同浓度AHFS改性后样品XRD谱图

    Figure  5  XRD patterns of the parent and AHFS modified HZSM-35 zeolites

    图  6  HZSM-35以及不同浓度AHFS改性后样品的SEM照片

    Figure  6  SEM images of the parent and AHFS modified HZSM-35 zeolites

    (a)/(d): Z-35; (b)/(e): Z-35AHFS(0.1); (c)/(f): Z-35AHFS(0.2)

    图  7  HZSM-35以及不同浓度AHFS改性后样品NH3-TPD谱图

    Figure  7  NH3-TPD patterns of the parent and AHFS modified HZSM-35 zeolites

    图  8  HZSM-35以及不同浓度AHFS改性后样品的红外光谱谱图

    Figure  8  FT-IR spectra of the parent and AHFS modified HZSM-35 zeolites

    图  9  HZSM-35以及不同浓度AHFS改性后样品在不同脱附温度下的吡啶红外光谱谱图

    Figure  9  Py-FTIR spectra of the parent and AHFS modified HZSM-35 zeolites after desorption at different temperatures

    (black: background, red: desorption at 150 ℃, blue: desorption at 400 ℃)

    图  10  HZSM-35以及不同浓度AHFS改性后样品异丁烯骨架异构化反应评价

    Figure  10  Evaluation of isomerization reaction of isobutene at parent and AHFS modified HZSM-35 zeolites

    (a): isobutene conversion; (b): n-butene selectivity reaction conditions: 350 ℃, 0.1 MPa, WHSV = 6 h−1

    图  11  HZSM-35以及不同浓度AHFS改性后样品催化异丁烯反应产物分布

    Figure  11  Product distribution of isomerization reaction of isobutene at parent and AHFS modified HZSM-35 zeolites

    图  12  HZSM-35以及不同浓度AHFS改性后样品催化异丁烯反应25 h后的TG曲线

    Figure  12  TG diagram of the isobutene reaction at parent and AHFS modified HZSM-35 zeolites after 25 h

    表  1  不同温度下正丁烯骨架异构化和异丁烯骨架异构化反应评价表

    Table  1  Evaluation of isomerization reaction of n-butene and isobutene at different temperatures

    t/℃n-butene isomerizationisobutene isomerization
    conv.
    x/ %
    selec.
    s/%
    yield.
    y/%
    conv.
    x/%
    selec.
    s/%
    yield
    y/%
    30015.6773.7111.5529.6674.5822.12
    32531.7970.6222.4544.3568.1030.34
    35049.9964.9732.4858.2855.3432.25
    37560.1253.0631.9068.9643.5330.02
    41067.6740.7427.5781.0027.0021.87
    reaction conditions: 0.1 MPa, WHSV = 6 h−1, reaction time: 8 h
    下载: 导出CSV

    表  2  两个反应的四种丁烯异构体产物分布

    Table  2  Distribution of four butene isomer products for two reactions

    Sample1-butene
    /%
    cis-2-
    butene
    /%
    tran-2-
    butene
    /%
    Isobutene
    /%
    Thermodynamic equilibrium8.3414.3923.6453.67
    Isobutene isomerization7.7714.7221.1256.40
    n-butene isomerization11.5319.0331.7137.73
    reaction conditions: 350 ℃, 0.1 MPa, WHSV = 6 h−1, reaction time: 8 h
    下载: 导出CSV

    表  3  不同浓度AHFS处理HZSM-35分子筛的织构性质

    Table  3  Basic physical parameters of the parent and AHFS modified HZSM-35 zeolites

    SampleSARSBET/(m2∙g−1)Smicro/(m2∙g−1)vtotal/(cm3∙g−1)vmicro/(cm3∙g−1)(vtotalvmicro)/(cm3∙g−1)Pore size/Å
    Z-358.912982450.3180.1290.1895.216
    Z-35AHSF(0.1)11.802822280.2920.1200.1725.278
    Z-35AHSF(0.2)12.352882230.3630.1170.2465.670
    下载: 导出CSV
  • [1] 温贤昭. 丁烯-1的应用及生产[J]. 石油化工,1982,10:688−692.

    WEN Xian-zhao. Application and production of 1-butene[J]. Petrochem Technol,1982,10:688−692.
    [2] FRIEDLANDER R H, WARD D J, OBENAUS F, NIERLICH F. Make plasticizer olefins via n-butene dimerization[J]. Hydrocarbon Process,1986,65(2):31−33.
    [3] YANG B, JIANG J G, XU H, LIU Y, PENG H, WU P. Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors[J]. Appl Catal A: Gen,2013,455(30):107−113.
    [4] HOUZVLCKA J, HANDILDAAR S, PONEC V. The Shape Selectivity in the Skeletal Isornenisation of n-Butene to Isobutene[J]. J Catal,1997,167(1):273−278. doi: 10.1006/jcat.1997.1525
    [5] DOMOKOS L, LEFFERT L, SESHAN K, LECHER J A. Isomerization of linear butenes to iso-butene over medium pore zeolites[J]. J Catal,2001,197(1):68−80. doi: 10.1006/jcat.2000.3056
    [6] WANG Y N, GAO Y, CHU W F, ZHAO D P, CHEN F C, ZHU X X, LI X J, LIU K F, XIE S J, XU L Y. Synthesis and catalytic application of FER zeolite with controllable size[J]. J Mater Chem A,2019,7(13):7573−7580. doi: 10.1039/C8TA09420A
    [7] XU H, CHEN W, ZHANG G Q, WEI P F, WU Q M, ZHU L F, MENG X J, LI X J, FEI J H, HAN S C, ZHU Q Y, ZHENG A M, MA Y H, XIAO F S. Ultrathin nanosheets of aluminosilicate FER zeolites synthesized in the presence of a sole small organic ammonium[J]. J Mater Chem A,2019,7:16671−16676. doi: 10.1039/C9TA04833B
    [8] WEI P F, ZHU X X, WANG Y N, CHU W F, XIE S J, YANG Z Q, LIU X B, LI X J, XU L Y. Rapid synthesis of ferrierite zeolite through microwave assisted organic template free route[J]. Microporous Mesoporous Mater,2019,279:220−227. doi: 10.1016/j.micromeso.2018.12.036
    [9] HU, Y, LIU, L, ZHANG, H, HU L, ZHANG C, ZHANG H. Effect of crystal size on the skeletal isomerization of n-butene over H-FER zeolite[J]. React Kinet Mech Catal,2014,112:241−248. doi: 10.1007/s11144-014-0684-4
    [10] MERIAUDEAU P, BACAUD R, HUNG L N, VU A T. Isomerization of butene in isobutene on ferrierite catalyst: a mono-or bimolecular process[J]. J Mol Catal A: Gen,1996,110:177−179. doi: 10.1016/1381-1169(96)00156-2
    [11] ZHENG X C, PONEC V. On the problems of the mechanism of the skeletal isomerization of n-butene[J]. Catal Lett,1994,27(1/2):113−117. doi: 10.1007/BF00806984
    [12] GUISNETt M, ANDY P, BOUCHEFF Y, GNEP N S, BENAZZI E. Skeletal isomerization of n-butenes: I. Mechanism of n-butene transformation on a nondeactivated H-ferrierite catalyst[J]. J Catal,1996,158(2):551−560. doi: 10.1006/jcat.1996.0053
    [13] HOUZVICKA J, PONEC V. Skeletal isomerization of n-butene[J]. Catal Rev,1997,39(4):319−344. doi: 10.1080/01614949708007099
    [14] GON S, SOON H P. The reversible skeletal isomerization between n-butenes and iso-butene over solid acid catalysts[J]. Catal Today,1998,44(1):215−222.
    [15] JO D, HONG S B. Mechanisms of the reverse skeletal isomerization of n-butenes to isobutene over zeolite catalysts[J]. ChemCatChem,2016,9(1):114−116.
    [16] JO D, HONG S B, CAMBLOR M A. Monomolecular skeletal isomerization of 1-butene over selective zeolite catalysts[J]. ACS Catal,2015,5(4):2270−2274. doi: 10.1021/acscatal.5b00195
    [17] GAO X, QIN Z, WANG B, ZHAO X, LI J, ZHAO H, LIU H, SHEN B. High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion[J]. Appl Catal A: Gen,2012,413:254−260.
    [18] ALBEETY R A, GEHRIG C A. Standard chemical thermodynamic properties of alkane isomer groups[J]. J Phys Chem Ref Data,1985,14(3):803−820. doi: 10.1063/1.555737
    [19] 汪哲明, 阎子峰. 丁烯异构化催化剂进展[J]. 石油化工,2002,31(4):311−315. doi: 10.3321/j.issn:1000-8144.2002.04.016

    WANG Zhe-ming, YAN Zi-feng. Progress of butene isomerization catalyst[J]. Pet Technol,2002,31(4):311−315. doi: 10.3321/j.issn:1000-8144.2002.04.016
    [20] 柯明, 汪燮卿, 张凤美. 分子筛孔结构和硅铝比对催化裂化产品中乙烯选择性的影响[J]. 石油炼制与化工,2003,9:53−58. doi: 10.3969/j.issn.1005-2399.2003.09.013

    KE Ming, WANG Xie-qing, ZHANG Feng-mei. Effect of zeolite pore structure and silicon-aluminum ratio on the selectivity of ethylene in catalytic cracking products[J]. Pet Process Petrochem,2003,9:53−58. doi: 10.3969/j.issn.1005-2399.2003.09.013
    [21] 赵明明. 正丁烯骨架异构催化剂ZSM-35成型及改性研究[D]. 北京: 北京化工大学, 2018.

    ZHAO Ming-ming. Research on forming and modification of the catalyst ZSM-35 for n-butene skeletal isomerization[D]. Beijing: Beijing University of Chemical Technology, 2018.
    [22] QIU Y, ZHAO G, LIU G, WANG L, ZHANG X. Catalytic cracking of supercritiel n-dodecane over wall-coated nano-Ag/HZSM-5 zeolites[J]. Ind Eng Chem Res,2014,53(47):18104−18111. doi: 10.1021/ie503335h
    [23] 周华东. 改性ZSM-35分子筛催化正丁烯骨架异构化的研究[D]. 北京: 中国石油大学(北京), 2016.

    ZHOU Hua-dong. Study on the skeletal isomerization of n-butene catalyzed by modified ZSM-35 zeolite[D]. Beijing: China University of Petroleum(Beijing), 2016.
    [24] 段欣瑞, 李孝国, 张永坤, 边凯, 张安峰, 侯章贵, 郭新闻. 纳米HZSM-5的酸性调控及其催化苯和稀乙烯制乙苯[J]. 石油学报(石油加工),2021,37(01):181−189.

    DUAN Xin-rui, LI Xiao-guo, ZHANG Yong-kun, BIAN kai, ZHANG An-feng, HOU Zhang-gui, GUO Xin-wen. Acid modification of nanosized HZSM-5 for alkylation of benzene with dilute ethylene[J]. Acta Pet Sin (Pet Process Sect),2021,37(01):181−189.
    [25] 王闻年, 袁德林, 李浩, 任申勇, 郭巧霞, 申宝剑. β沸石结构及其催化性能的调控[J]. 化工学报,2016,67(8):3429−3435.

    WANG Wen-nian, YUAN De-lin, LI Hao, REN Shen-yong, GUO Qiao-xia, SHEN Bao-jian. Regulation of structure and catalytic performance of β-zeolite by post treatments[J]. J Chem Ind Eng,2016,67(8):3429−3435.
    [26] LIU W, HU H Q, YANG L, ZHANG L, XIA C J, WANG Q, KE M. Distribution of effective ferrierite active sites for skeletal isomerization of n-butene to isobutene[J]. Chem Select,2019,4(27):7851−7857.
    [27] REALE E, LEYVA A, CORMA A, MARTINEZ C, GARCIA H, REY F. A fluoride-catalyzed sol-gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants[J]. J Mater Chem,2005,15(17):1742−1754. doi: 10.1039/b415066j
    [28] KAO H M, CHEN Y C, TING C C, CHEN P T, JIANG J C. Characterization of extraframework aluminum in H-mordenite dealuminated with ammonium hexafluorosilicate[J]. Catal Today,2004,97(1):13−23. doi: 10.1016/j.cattod.2004.01.007
    [29] ZUNULDA R F, CARLOS A Q, NORA S F, RAUL A C. Tungsten promoted ammonium and potassium ferrierite: deactivation during the skeletal isomerization of linear butenes[J]. Appl Catal A: Gen,2001,216(1-2):91−101. doi: 10.1016/S0926-860X(01)00545-2
    [30] WANG Q L, GIANNETTO G, GUISNET M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking[J]. J Catal,1991,130(2):471−482. doi: 10.1016/0021-9517(91)90129-R
    [31] YOON J W, LEE J H, CHANG J S, CHOO D H, LEE S J, JHUNG S H. Trimerization of isobutene over zeolite catalysts: Remarkable performance over a ferrierite zeolite[J]. Catal Commun,2007,8(6):967−970. doi: 10.1016/j.catcom.2006.10.006
    [32] GYRGY O. Comparison of butene skelctal isomerization selectivity over a pair of commercial H-ferrierites[J]. Micropor Mesopor Mat,2007,104(1/3):192−198. doi: 10.1016/j.micromeso.2007.02.004
    [33] MUKHAMBETOV I N, EGOROVA S R, MUKHAMED A N, LAMBEROV A A. Hydrothermal modification of the alumina catalyst for the skeletal isomerization of n-butenes[J]. Appl Catal A: Gen,2018,554:64−70. doi: 10.1016/j.apcata.2018.01.024
    [34] 郭忠森, 祖运, 惠宇, 秦玉才, 王焕, 张晓彤, 宋丽娟. 烯烃对噻吩在介孔分子筛Al-MCM-41活性位物种上吸附脱硫机制的影响[J]. 燃料化学学报,2019,47(4):474−483.

    GUO Zhong-sen, ZU Yun, HUI Yu, QIN Yu-cai, WANG Huan, ZHANG Xiao-tong, SONG Li-juan. Influence of olefin on the mechanism of thiophene adsorption on the active species of Al-MCM-41 mesoporous zeolites[J]. J Fuel Chem Technol,2019,47(4):474−483.
    [35] 祖运, 秦玉才, 高雄厚, 莫周胜, 张磊, 张晓彤, 宋丽娟. 催化裂化条件下噻吩与改性Y分子筛的作用机制[J]. 燃料化学学报,2015,43(7):862−869. doi: 10.3969/j.issn.0253-2409.2015.07.012

    ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol,2015,43(7):862−869. doi: 10.3969/j.issn.0253-2409.2015.07.012
    [36] ZHENG J, QIN Y C, LI Q, ZHANG L, GAO X H, SONG L J. A periodic DFT study of the synergistic mechanisms between extra-framework aluminum species and Brønsted acid sites in HY zeolites[J]. Ind Eng Chem Res,2020,59(7):2736−2744. doi: 10.1021/acs.iecr.9b05277
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-04-30

目录

    /

    返回文章
    返回