留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene

LIU Wei LI Zhuang ZHANG Shao-peng JIAN Wei-wei MA Dan-zhu

刘微, 李壮, 张绍鹏, 建伟伟, 马丹竹. 多壁碳纳米管-二氧化硅吸附剂对甲苯的吸附性能[J]. 燃料化学学报(中英文), 2021, 49(6): 861-872. doi: 10.1016/S1872-5813(21)60090-7
引用本文: 刘微, 李壮, 张绍鹏, 建伟伟, 马丹竹. 多壁碳纳米管-二氧化硅吸附剂对甲苯的吸附性能[J]. 燃料化学学报(中英文), 2021, 49(6): 861-872. doi: 10.1016/S1872-5813(21)60090-7
LIU Wei, LI Zhuang, ZHANG Shao-peng, JIAN Wei-wei, MA Dan-zhu. Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 861-872. doi: 10.1016/S1872-5813(21)60090-7
Citation: LIU Wei, LI Zhuang, ZHANG Shao-peng, JIAN Wei-wei, MA Dan-zhu. Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 861-872. doi: 10.1016/S1872-5813(21)60090-7

多壁碳纳米管-二氧化硅吸附剂对甲苯的吸附性能

doi: 10.1016/S1872-5813(21)60090-7
详细信息
  • 中图分类号: X511

Adsorption performance of multi-walled carbon nanotube-SiO2 adsorbent for toluene

Funds: The project was upported by Scientific Research Project of Liaoning Provincial Education Department (L2019026, L2019047), the Open Foundation of Key Laboratory of Industrial Ecology and Environmental Engineering, MOE (KLIEEE1804), the Natural Science Foundation Guidance and Planning Program of Liaoning Province, China (2019-ZD0065), Liaoning Revitalization Talents Program (XLYC2007143).
More Information
  • 摘要: 本研究采用溶胶-凝胶法制备了MWCNTs摩尔比例分别为38%、52%和66%的多壁碳纳米管-二氧化硅复合吸附剂MWCNTs-SiO2-2、MWCNTs-SiO2-4、MWCNTs-SiO2-6 (CS2、CS4、CS6)。研究了MWCNTs含量、温度(30−60 ℃)、水蒸气浓度(1%−5%)和循环次数对甲苯吸附量的影响,并进行了吸附动力学分析。研究结果表明: 在30−60 ℃内,吸附甲苯的能力大小为:AC(活性炭) < CS2 < CS4 < CS6,其中CS6对甲苯的吸附量高达50.28 mg/g。温度每升高10 ℃,穿透时间降低10−20 min,水蒸气浓度每增加1%,吸附含量约下降3.5%。甲苯传质速率最快的阶段可用准二级吸附动力学模型很好的描述,此时,粒内扩散起主要作用。MWCNTs摩尔百分比为38%−66%,含量越多越易于吸附甲苯,且再生后的MWCNTs-SiO2吸附剂官能团种类不发生改变,仍能保持良好的吸附性能。
  • FIG. 723.  FIG. 723.

    FIG. 723. 

    Figure  1  Experimental system 1: nitrogen cylinder; 2: reducing valve; 3: gas flow meter; 4: gas cushion; 5: steam generator; 6: catharometer;7: wet gas meter; 8: thermometer; 9: heating furnace; 10: fixed bed reaction equipment; 11: gas chromatograph GC-9600; 12: tail gas condenser; 13: toluene

    Figure  2  TEM images: (a) MWCNTs, (b) purified MWCNTs

    Figure  3  SEM: (a) 30 μm, (b) 2 μm, (c) 1 μm and (d) 500 nm

    Figure  4  FT-IR spectra of pattern for CS2, CS4, CS6

    Figure  5  Nitrogen adsorption and desorption isotherms

    Figure  6  Influence of temperature on outlet concentration

    Figure  7  Adsorption performance of MWCNTs-SiO2 adsorbent at different temperatures

    Figure  8  Influence of water vapor content on outlet concentration

    Figure  9  Adsorption kinetic model fitting

    Figure  10  Regeneration performance of CS6

    Figure  11  Adsorption capacity of CS6 after regeneration

    Figure  12  FT-IR spectra of pattern for CS6

    Table  1  Textural properties of MWCNTs-SiO2 composites

    AdsorbentAverage
    pore diameter
    /nm
    BET surface
    area
    /(m2·g−1)
    Total
    pore volume
    /(cm3·g−1)
    Micropore volume
    /(cm3·g−1)
    Micropore surface
    area
    /(m2·g−1)
    AC0.635936.1241.034
    CS20.4781671.6781.2510.12245.47
    CS40.4831299.3421.1370.24394.53
    CS60.492946.0550.9160.28465.33
    下载: 导出CSV

    Table  2  Fitting related parameters of each sample model

    Mathematical modelSampleqe /(mg·g−1)k1.ad /(g·mg−1·min−1)R2P
    ${\rm{ln} }\left( { {q_{\rm{e} } } - {q_{{t} } } } \right) = {\rm{ln} }{q_{\rm{e} } } - {k_{1.{\rm{ad} } } }t$CS242.20.0260.845−0.919
    CS449.720.0270.900−0.949
    CS650.280.0210.839−0.916
    $\dfrac{t}{ { {q_{{t} } } } } = \dfrac{1}{ { {k_{2.{\rm{ad} } }q_{\rm{e} }^2} } } + \dfrac{1}{ {q_{\rm{e} } } }t$CS242.20.000580.9970.998
    CS449.720.000450.9950.992
    CS650.280.00030.9920.992
    ${q_{{t} } } = {k_{ {\rm{pi} } } }{t^{0.5} } + C$CS23.4378−9.19510.9690.98
    CS43.7524−12.3970.970.99
    CS64.296−15.470.980.986
    ${q_{{t} } } = \dfrac{1}{\beta }{\rm{ln} }\left( {\alpha \beta } \right) + \dfrac{1}{\beta }{\rm{ln} }t$CS20.9680.0650.940.94
    CS40.8270.0590.920.96
    CS60.6740.0540.910.95
    note: k1.ad and k2.ad are the first and second rate constants respectively, g·mg−1·min−1. qt is the toluene absorption of MWCNTs-SiO2 at time t, mg·g−1; kpi is the intraparticle diffusion rate constant, mg·(g·min0.5)−1; α, β and C are constants
    下载: 导出CSV
  • [1] HU L, PENG Y, WU F, PENG S, JINJUN L, LIU Z. Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene[J]. J Taiwan Inst Chem Eng,2017,80(7):399−405.
    [2] NIU H, ZIWEI M O, SHAO M, SIHUA L U, XIE S. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front Environ Sci Eng,2016,10(5):1−11. doi: 10.1007/s11783-016-0828-z
    [3] MILLER G, Jr T, HACKETT D. "Photochemical and Industrial Smog" in Living in the Environment, 2nd ed[M]. USA: Nelson, 2011, 20(3): 465-471.
    [4] ZHOU K, MA W, ZENG Z, MA X, XU X, GUO Y, LI H, LI L. Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites[J]. Chem Eng J,2019,37(2):1122−1133.
    [5] GUPTA K N. Adsorption of volatile organic compounds on granular activated carbon[J]. J Biol Chem,2009,249(3):797−802.
    [6] ZHOU J, YOU Y, BAI Z, HU Y, ZHANG J, ZHANG N. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China[J]. Sci Total Environ,2011,409(3):452−459. doi: 10.1016/j.scitotenv.2010.10.022
    [7] DINH T V, CHOI I Y, SON Y S, SONG K Y, SUNWOO Y, KIM J C. Volatile organic compounds (VOCs) in surface coating materials: Their compositions and potential as an alternative fuel[J]. J Environ Manage,2016,168(1):157−164.
    [8] WANG H, ZHU T, FAN X, NA H. Adsorption and desorption of small molecule volatile organic compounds over carbide-derived carbon[J]. Carbon,2014,67(2):712−720.
    [9] SUI H P, LI X, CONG S, HE L. Removal and recovery of o-xylene by silica gel using vacuum swing adsorption[J]. Chem Eng J,2017,316(5):232−242.
    [10] YUAN B, SHAO M, LU S, WANG B. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmos Environ,2010,44(15):1919−1926. doi: 10.1016/j.atmosenv.2010.02.014
    [11] HUNG C, BAI H, KARTHIK M. Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: a comparative study[J]. Sep Purif Technol,2009,64(3):265−272. doi: 10.1016/j.seppur.2008.10.020
    [12] XIA Q, LI Z, XIAO L, ZHANG Z, XI H. Effects of loading different metal ions on an activated carbon on the desorption activation energy of dichloromethane/trichloromethane[J]. J Hazard Mater,2010,179(3):790−794.
    [13] SUI H, JIANG P, LI X, LIU Z, LI X, HE L. Binary adsorption equilibrium and breakthrough of n-butyl acetate and p-xylene on granular activated carbon[J]. Ind Eng Chem Res,2019,58(1):8279−8289.
    [14] PARMAR G R, RAO N N. Emerging control technologies for volatile organic compounds[J]. Crit Rev Environ Sci Technol,2009,39(1):41−78.
    [15] ULRICH B, FRANK T C, MCCORMICK A, CUSSLER E L. Membrane-assisted VOC removal from aqueous acrylic latex[J]. J Membr Sci,2014,452(3):426−432.
    [16] SAEID N, JOHN D A, POOYA S. Heel formation during volatile organic compound desorption from activated carbon fiber cloth[J]. Carbon,2016,96(1):131−138.
    [17] SUI H, LIU H, AN P, HE L, LI X, CONG S. Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process[J]. J Taiwan Inst Chem Eng,2017,74(3):218−224.
    [18] OH K J, PARK D W, KIM S S, PARK S W. Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon[J]. Korean J Chem Eng,2010,27(2):632−638. doi: 10.1007/s11814-010-0079-9
    [19] WANG C M, CHUNG T W, HUANG C M, WU H. Adsorption equilibria of acetate compounds on activated carbon, silica gel, and 13X zeolite[J]. J Chem Eng Data,2005,50(3):527−531.
    [20] YI F Y, LIN X D, CHEN S X, WEI X Q. Adsorption of VOC on modified activated carbon fiber[J]. J Porous Mater,2009,16(5):521−526. doi: 10.1007/s10934-008-9228-5
    [21] UPARE D P, YOON S, LEE C W. Nano-structured porous carbon materials for catalysis and energy storage[J]. Korean J Chem Eng,2011,28(3):731−743. doi: 10.1007/s11814-010-0460-8
    [22] JUNFEI B, YILUN H, QIANMING G, XI L, YUYAO L, JIANNING G. Preparation of porous carbon nanotube/carbon composite spheres and their adsorption properties[J]. Carbon,2018,137(2):493−501.
    [23] BEDIN K C, MARTINS A C, CAZETTA A L, PEZOTI O, ALMEIDA V C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chem Eng J,2016,286(1):476−484.
    [24] HAN Z, KONG S, SUI H, LI X, ZHANG Z. Preparation of carbon-silicon doping composite adsorbent material for removal of VOCs[J]. Mater,2019,12(15):2438−2446. doi: 10.3390/ma12152438
    [25] DOU B, LI J, WANG Y, WANG H, MA C, HAO Z. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites[J]. J Hazard Mater,2011,196(3):194−200.
    [26] MOHAMMADI A, MOGHADDAS J. Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites[J]. Chem Eng Res Des,2015,94(2):475−484.
    [27] KARIIM I, ABDULKAREEM A S, ABUBAKRE O K. Development and characterization of MWCNTs from activated carbon as adsorbent for metronidazole and levofloxacin sorption from pharmaceutical wastewater: Kinetics, isotherms and thermodynamic studies[J]. J Environ Sci Afr,2020,7(19):2268−2276.
    [28] JAHANGIRI M, SHAHTAHERI S J, ADI J, RASHIDI A, KAKOOEI H, FORUSHANI A R, GANJILI M A, GHORBANALI A. The adsorption of benzene, toluene and xylenes (BTX) on the carbon nanostructures: the study of different parameters[J]. Fresenius Environ Bull,2011,20(4):1036−1045.
    [29] PAN B O, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. J Environ Sci Technol,2008,42(24):9005−9013. doi: 10.1021/es801777n
    [30] REN X, CHEN C, NAGATSU M, WANG X. Carbon nanotubes as adsorbents in environmental pollution management: A review[J]. Chem Eng J,2011,170(3):395−410.
    [31] PURCENO A D, TEIXEIRA P C, SOUZA J D, FERNANDEZ-OUTON L E, ARDISSON J D, LAGO R M. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol[J]. J Colloid Interface Sci,2012,379(1):84−88. doi: 10.1016/j.jcis.2012.04.018
    [32] YAN T, LI T X, LI H. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes[J]. Int J Refrig,2014,46(1):165−172.
    [33] AGNIHOTRI S, ZHENG Y, MOTA, JOSÉ P B, IVANOV I, KIM P. Practical modeling of heterogeneous bundles of single-walled carbon nanotubes for adsorption applications: Estimating the fraction of open-ended nanotubes in samples[J]. J Phys Chem C,2007,111(37):13747−13755. doi: 10.1021/jp074183o
    [34] SU F, LU C, HU S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes[J]. Colloids Surf A,2010,353(1):83−91. doi: 10.1016/j.colsurfa.2009.10.025
    [35] ZARE K, GUPTA V K, MORADI O. A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: A review[J]. J Nanostruct Chem,2015,365(5):227−236.
    [36] GUPTA V K, KUMAR R, NAYAK A, SALEH T A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review[J]. Adv Colloid Interface Sci,2013,193(2):24−34.
    [37] GANGUPOMU R H, SATTLER M L, RAMIREZ D. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities[J]. J Hazard Mater,2016,302(25):362−374.
    [38] KONDRATYUK P, YATES J T. Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: The adsorption of n-nonane and CCl4[J]. Chem Phys Lett,2005,410(6):324−329.
    [39] WANG G, DOU B, ZHANG Z, LIU H. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon[J]. J Environ Sci,2015,27(4):65−73.
    [40] YANG Y Y, JIA F R, JIAN W W, ZHANG S P, MA D Z. Influence of Cr3+ concentration on SO2 removal over TiO2 based multi-walled carbon nanotubes[J]. China Pet Process Petrochem Technol,2019,21(1):26−38.
    [41] RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents[J]. Appl Surf Sci,2007,253(14):6032−6040. doi: 10.1016/j.apsusc.2006.12.117
    [42] TANDEKER S, NOVAK Z. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity[J]. J Hazard Mater,2009,165(3):1114−1118.
    [43] KOSUGE K, KUBO S, KIKUKAWA N, TAKEMORI M. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance[J]. Langmuir,2007,23(6):3095−3102. doi: 10.1021/la062616t
    [44] TULAPHOL S, BUNSAN S, KANCHANATIP E. Influence of chlorine substitution on adsorption of gaseous chlorinated phenolics on multi-walled carbon nanotubes embedded in SiO2[J]. Int J Environ Sci Technol,2016,13(6):1465−1474. doi: 10.1007/s13762-016-0984-5
    [45] DOĞAN M, ALKAN M. Adsorption kinetics of methyl violet onto perlite[J]. Chemosphere,2003,50(4):517−528. doi: 10.1016/S0045-6535(02)00629-X
    [46] NAMASIVAYAM C, SANGEETHA D. Application of coconut coir pith for the removal of sulfate and other anions from water[J]. Desalination,2008,219(1):1−13.
    [47] HO Y S, NG J C Y, MCKAY G. Kinetics of pollutant sorption by biosorbents: Review[J]. Sep Purif Rev,2000,29(2):189−232. doi: 10.1081/SPM-100100009
    [48] HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Saf Environ Prot,1998,76(4):332−340. doi: 10.1205/095758298529696
    [49] KENNEDY L J, VIJAYA J J, SEKARAN G, KAYAIVIZHI K. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon[J]. J Hazard Mater,2007,149(1):134−143. doi: 10.1016/j.jhazmat.2007.03.061
    [50] RUDZINSKI W, PLAZINSKI W. Kinetics of dyes adsorption at the solid-solution interfaces: A theoretical description based on the two-step kinetic model[J]. J Environ Sci Technol,2008,42(7):2470−2475. doi: 10.1021/es7025278
    [51] KAVITHA D, NAMASIVAYAM C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J]. Bioresour Technol,2007,98(1):14−21. doi: 10.1016/j.biortech.2005.12.008
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  74
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2020-12-28
  • 网络出版日期:  2021-04-27
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回