留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质气再燃脱除流化床N2O的机理研究

李颖 牛胜利 王永征 韩奎华 周文波 王俊

李颖, 牛胜利, 王永征, 韩奎华, 周文波, 王俊. 生物质气再燃脱除流化床N2O的机理研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60092-0
引用本文: 李颖, 牛胜利, 王永征, 韩奎华, 周文波, 王俊. 生物质气再燃脱除流化床N2O的机理研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60092-0
LI Ying, NIU Sheng-li, WANG Yong-zheng, HAN Kui-hua, ZHOU Wen-bo, WANG Jun. Mechanistic study of N2O reduction by biomass gasification gas reburning[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60092-0
Citation: LI Ying, NIU Sheng-li, WANG Yong-zheng, HAN Kui-hua, ZHOU Wen-bo, WANG Jun. Mechanistic study of N2O reduction by biomass gasification gas reburning[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60092-0

生物质气再燃脱除流化床N2O的机理研究

doi: 10.1016/S1872-5813(21)60092-0
基金项目: 国家自然科学基金(51576117),山东省重大科技创新工程(2019JZZY020305)资助
详细信息
    通讯作者:

    E-mail: nsl@sdu.edu.cn

  • 中图分类号: TQ534

Mechanistic study of N2O reduction by biomass gasification gas reburning

Funds: The project was supported by the National Natural Science Foundation of China(51576117), Important Project in the Scientific Innovation of Shandong Province(2019JZZY020305)
  • 摘要: 利用密度泛函理论和过渡态理论,在分子水平上研究了循环流化床锅炉再燃过程中生物质气CO对CaO催化N2O脱除的影响。构建了N2O分子在CaO(100)表面的吸附模型,同时对N2O分子在CaO(100)表面的分解及还原过程进行了探究。结果表明,N2O在CaO(100)表面的异相分解相比于N2O的均相分解所需的能垒更低,CaO的存在有利于N2O的分解;CaO(100)表面的O活性位点被N2O分解产生的原子O毒化,而再燃过程中生物质气CO促进了CaO(100)表面活性位点的再生,有利于CaO对N2O分解的催化作用。
  • 图  1  N2O的均相分解反应各驻点结构示意图

    Figure  1  Structures of stagnation points of N2O homogeneous decomposition (Bond length: nm)

    图  2  N2O的均相分解反应势能面

    Figure  2  Reaction potential energy surface of N2O homogeneous decomposition

    图  3  N2O分子在CaO(100)表面吸附的稳定构型

    Figure  3  Stable adsorption structures of N2O on CaO(100) surfaces (Bond length: nm; blue: N atom; red: O atom; green: Ca atom)

    图  4  四种稳定构型在CaO(100)表面吸附后的局部态密度图

    Figure  4  Partial densities of states of the four stable stuctures after adsorption on the CaO(100) surfaces

    图  5  N2O分子在CaO(100)表面吸附的最优构型

    Figure  5  Optimal adsorption structure of N2O on CaO(100) surface (Bond length: nm)

    图  6  CaO(100)表面N2O的分解反应各驻点结构示意图

    Figure  6  Structures of stagnation points of N2O decomposition on CaO(100) surface (Bond length: nm)

    图  7  CaO(100)表面N2O的分解反应势能面

    Figure  7  Reaction potential energy surface of N2O decomposition on CaO(100) surface

    图  8  N2O参与的CaO(100)表面再生各驻点结构示意图

    Figure  8  Structures of stagnation points of the recovery process on CaO(100) surface with N2O (Bond length: nm)

    图  9  N2O参与的CaO(100)表面再生反应势能面

    Figure  9  Reaction potential energy surface of the recovery process on CaO(100) surface with N2O

    图  10  CO分子在CaO(100)表面吸附的稳定构型

    Figure  10  Stable adsorption structures of CO on CaO(100) surfaces (gray: C atom; red: O atom; green: Ca atom)

    图  11  CO参与的CaO(100)表面再生各驻点结构示意图

    Figure  11  Structures of stagnation points of the recovery process on CaO(100) surface with CO (Bond length: nm)

    图  12  CO参与的CaO(100)表面再生反应势能面

    Figure  12  Reaction potential energy surface of the recovery process on CaO(100) surface with CO

  • [1] JI J, CHENG L, WEI Y, WANG J, GAO X, FANG M, WANG Q. Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model[J]. Particuology,2020,49:77−87. doi: 10.1016/j.partic.2019.04.003
    [2] ULUSOY B, LIN W, KARLSTRöM O, LI S, SONG W, GLARBORG P, DAM-JOHANSEN K, WU H. Formation of NO and N2O during raw and demineralized biomass char combustion[J]. Energy Fuels,2019,33(6):5304−5315. doi: 10.1021/acs.energyfuels.9b00622
    [3] 苗苗, 张缦, 吕俊复, 杨海瑞, 张凯. 流化床燃烧中N2O生成机理与减排技术[J]. 清华大学学报(自然科学版),2020,60(6):507−517.

    MIAO Miao, ZHANG Man, LV Jun-fu, YANG Hai-rui, ZHANG Kai. N2O formation mechanism and control in circulating fluidized beds[J]. J Tsinghua Univ: Nat Sci Ed,2020,60(6):507−517.
    [4] RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science,2009,326(5949):123. doi: 10.1126/science.1176985
    [5] 周昊, 张志中, 鲍强, 刘建成, 岑可法. 添加剂对NOxOUT脱硝及N2O、CO生成的影响特性[J]. 化工学报,2014,65(6):2232−2240. doi: 10.3969/j.issn.0438-1157.2014.06.038

    ZHOU Hao, ZHANG Zhi-zhong, BAO Qiang, LIU Jian-cheng, CEN Ke-fa. Influence of additives on NOxOUT denitration and formation of N2O and CO[J]. CIESC J,2014,65(6):2232−2240. doi: 10.3969/j.issn.0438-1157.2014.06.038
    [6] 郝江涛, 于伟, 卢平, 王秦超, 何楠, 祝秀明, 徐森荣. 生物质高级再燃脱硝的影响因素与元素释放特性[J]. 燃料化学学报,2014,42(5):552−559.

    HAO Jiang-tao, YU Wei, LU Ping, WANG Qin-chao, HE Nan, ZHU Xiu-ming, XU Sen-rong. Influence factors and element release properties during NO reduction through biomass advanced reburning[J]. J Fuel Chem Technol,2014,42(5):552−559.
    [7] 殷立宝, 阎维平, 叶学民, 王卓. CFB锅炉燃烧中N2O的生成机理与减排控制[J]. 锅炉制造,2003,(1):7−9. doi: 10.3969/j.issn.1674-1005.2003.01.003

    YIN Li-bao, YAN Wei-ping, YE Xue-min, Wang Zhuo. Formation mechanism of N2O in CFB boiler and some measures of decomposing N2O[J]. Boiler Manuf,2003,(1):7−9. doi: 10.3969/j.issn.1674-1005.2003.01.003
    [8] 朱冲, 仇云霞. 适用循环流化床锅炉的脱硝技术[J]. 电力科技与环保,2015,31(3):15−17.

    ZHU Chong, QIU Yun-xia. Denitrification technology for circulating fluidized bed boiler[J]. Electr Power Environ Prot,2015,31(3):15−17.
    [9] 李至, 祝培旺, 胡敏. 生物质再燃减少燃煤锅炉NOx排放的研究及应用[J]. 电站系统工程,2020,36(5):7−12.

    LI Zhi, ZHU Pei-wang, HU Min. Review of biomass re-burning study and application in China[J]. Power Syst Eng,2020,36(5):7−12.
    [10] 杨章宁, 卢啸风, 倪刚, 冉燊铭. 生物质气与煤粉耦合燃烧再燃还原NO热态试验研究[J]. 动力工程学报,2020,40(10):781−785, 814.

    YANG Zhang-ning, LU Xiao-feng, NI Gang, RAN Shen-ming. Hot-state experiments on coupled reburning of biomass gas and pulverized coal for NO reduction[J]. J Chin Soc Power Eng,2020,40(10):781−785, 814.
    [11] 李海英, 张泽, 姬爱民, 赵荣煊, 杨鹏. 生物质灰结渣和腐蚀特性[J]. 环境工程技术学报,2017,7(1):107−113. doi: 10.3969/j.issn.1674-991X.2017.01.016

    LI Hai-ying, ZHANG Ze, JI Ai-min, ZHAO Rong-xuan, YANG Peng. Behavior of slagging and corrosion of biomass ash[J]. J Environ Eng Technol,2017,7(1):107−113. doi: 10.3969/j.issn.1674-991X.2017.01.016
    [12] 王洋, 董长青. 生物质燃烧和热解中钾的释放规律研究进展[J]. 化工进展,2020,39(4):1292−1301.

    WANG Yang, DONG Chang-qing. Release of K during biomass combustion and pyrolysis: a review[J]. Chem Ind Eng Prog,2020,39(4):1292−1301.
    [13] 侯祥松, 李金平, 张海, 吕俊复, 岳光溪. 石灰石脱硫对循环流化床中N2O排放浓度的影响[J]. 电站系统工程,2005,21(3):1−3. doi: 10.3969/j.issn.1005-006X.2005.03.001

    HOU Xiang-song, LI Jin-ping, ZHANG hai, LU Jun-fu, YUE Guang-xi. Limestoneeffects on N2O emission in CFB combustors[J]. Power Syst Eng,2005,21(3):1−3. doi: 10.3969/j.issn.1005-006X.2005.03.001
    [14] 周浩生, 陆继东, 周琥. 燃煤流化床加入氧化钙的氮转化机理[J]. 工程热物理学报,2000,21(5):647−651. doi: 10.3321/j.issn:0253-231X.2000.05.030

    ZHOU Hao-sheng, LU Ji-dong, ZHOU Hu. Nitrogen conberdion in fluidized bed combustion of coal with limestone addition[J]. J Eng Thermophys,2000,21(5):647−651. doi: 10.3321/j.issn:0253-231X.2000.05.030
    [15] 胡笑颖. 生物质气再燃脱除燃煤流化床烟气中N2O的机理研究[D]. 北京: 华北电力大学(北京), 2011.

    HU Xiao-ying. Mechanism study on biomass derived gas reburning for N2O reduction in a fluidized bed combustor[D]. Beijing: North China Electric Power University, 2011.
    [16] WU L, QIN W, HU X, DONG C, YANG Y. Mechanism study on the influence of in situ SOx removal on N2O emission in CFB boiler[J]. Appl Surf Sci,2015,333:194−200. doi: 10.1016/j.apsusc.2015.01.229
    [17] KANTOROVICH L N, GILLAN M J. The energetics of N2O dissociation on CaO(001)[J]. Surf Sci,1997,376(1):169−176.
    [18] PISKORZ W, ZASADA F, STELMACHOWSKI P, KOTARBA A, SOJKA Z. DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: from molecular orbital picture account to simulation of transient and stationary rate profiles[J]. J Phys Chem C,2013,117(36):18488−18501. doi: 10.1021/jp405459g
    [19] HU X, WU L, JU S, DONG C, YANG Y, QIN W. Mechanistic study of catalysis on the decomposition of N2O[J]. Environ Eng Sci,2014,31(6):308−316. doi: 10.1089/ees.2013.0492
    [20] SNIS A, MIETTINEN H. Catalytic decomposition of N2O on CaO and MgO: experiments and ab initio calculations[J]. J Phys Chem B,1998,102(14):2555−2561. doi: 10.1021/jp980093v
    [21] 吴令男. 燃料在循环流化床锅炉燃烧过程中挥发分氮的迁移规律研究[D]. 北京: 华北电力大学(北京), 2017.

    WU Ling-nan. Study on the conversion mechanism of volatile nitrogen during fuel combstion in circulating fuidized bed boilers[D]. Beijing: North China Electric Power University, 2017.
    [22] BROQVIST P, GRÖNBECK H, PANAS I. Surface properties of alkaline earth metal oxides[J]. Surf Sci,2004,554(2):262−271.
    [23] 厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006
    [24] KAPTEIJN F, RODRIGUEZ-MIRASOL J, MOULIJN J A. Heterogeneous catalytic decomposition of nitrous oxide[J]. Appl Catal B: Environ,1996,9(1):25−64.
    [25] HU X, WU L, JU S, DONG C, YANG Y, QIN W. Mechanistic study of catalysis on the decomposition of N2O[J]. Environ Eng Sci,2014,31(6):308−316. doi: 10.1089/ees.2013.0492
    [26] GUO F Y, LONG C G, ZHANG J, ZHANG Z, LIU C H, YU K. Adsorption and dissociation of H2O on Al(111) surface by density functional theory calculation[J]. Appl Surf Sci,2015,324:584−589. doi: 10.1016/j.apsusc.2014.10.041
    [27] 闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J]. 燃料化学学报,2019,47(10):1163−1172. doi: 10.3969/j.issn.0253-2409.2019.10.002

    YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHEN Liang. Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study[J]. J Fuel Chem Technol,2019,47(10):1163−1172. doi: 10.3969/j.issn.0253-2409.2019.10.002
    [28] FU C M, KORCHAK V N, HALL W K. Decomposition of nitrous oxide on FeY zeolite[J]. J Catal,1981,68(1):166−171. doi: 10.1016/0021-9517(81)90049-X
    [29] 张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军. 钙对焦炭非均相还原NO的微观作用机理: DFT研究[J]. 燃料化学学报,2020,8(2):163−171. doi: 10.3969/j.issn.0253-2409.2020.02.005

    ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LV Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. J Fuel Chem Technol,2020,8(2):163−171. doi: 10.3969/j.issn.0253-2409.2020.02.005
    [30] WU L, HU X, QIN W, GAO P, DONG C, YANG Y. Effect of CaO on the selectivity of N2O decomposition products: A combined experimental and DFT study[J]. Surf Sci,2016,651:128−136. doi: 10.1016/j.susc.2016.04.004
    [31] LEGLISE J, PETUNCHI J O, HALL W K. N2O decomposition over iron-exchanged mordenite[J]. J Catal,1984,86(2):392−399. doi: 10.1016/0021-9517(84)90384-1
    [32] 张磊, 杨学民, 谢建军, 丁同利, 姚建中, 宋文立, 林伟刚. 粉煤和石灰石加入位置对循环流化床燃煤过程NOx与N2O排放的影响[J]. 中国电机工程学报,2006,26(21):92−98. doi: 10.3321/j.issn:0258-8013.2006.21.015

    ZHANG Lei, YANG Xue-min, XIE Jian-jun, DING Tong-li, YAO Jian-zhong, SONG Wen-li, LIN Wei-gang. Effect of coal and limestone addition position on emission of NOx and N2O duringcoal combustion in a circulating fluidized bed combustor[J]. Proc CSEE,2006,26(21):92−98. doi: 10.3321/j.issn:0258-8013.2006.21.015
    [33] KAPTEIJN F, MARBÁN G, RODRIGUEZ-MIRASOL J, MOULIJN J A. Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts[J]. J Catal,1997,167(1):256−265. doi: 10.1006/jcat.1997.1581
    [34] DEBBAGH M N, BUENO-LÓPEZ A, LECEA C S M D, PÉREZ-RAMíREZ J. Kinetics of the N2O + CO reaction over steam-activated FeZSM-5[J]. Appl Catal A: Gen,2007,327(1):66−72. doi: 10.1016/j.apcata.2007.04.029
  • 加载中
图(12)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  12
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-05-07

目录

    /

    返回文章
    返回