留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3载体负载的铂和钨双功能催化剂在甘油氢解制1,3-丙二醇中的性能研究

徐文峰 牛鹏宇 郭荷芹 贾丽涛 李德宝

徐文峰, 牛鹏宇, 郭荷芹, 贾丽涛, 李德宝. Al2O3载体负载的铂和钨双功能催化剂在甘油氢解制1,3-丙二醇中的性能研究[J]. 燃料化学学报(中英文), 2021, 49(9): 1270-1280. doi: 10.1016/S1872-5813(21)60101-9
引用本文: 徐文峰, 牛鹏宇, 郭荷芹, 贾丽涛, 李德宝. Al2O3载体负载的铂和钨双功能催化剂在甘油氢解制1,3-丙二醇中的性能研究[J]. 燃料化学学报(中英文), 2021, 49(9): 1270-1280. doi: 10.1016/S1872-5813(21)60101-9
XU Wen-feng, NIU Peng-yu, GUO He-qin, JIA Li-tao, LI De-bao. Study on the performance of platinum and tungsten bifunctional catalyst supported on Al2O3 in the hydrogenolysis of glycerol to 1,3-propanediol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1270-1280. doi: 10.1016/S1872-5813(21)60101-9
Citation: XU Wen-feng, NIU Peng-yu, GUO He-qin, JIA Li-tao, LI De-bao. Study on the performance of platinum and tungsten bifunctional catalyst supported on Al2O3 in the hydrogenolysis of glycerol to 1,3-propanediol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1270-1280. doi: 10.1016/S1872-5813(21)60101-9

Al2O3载体负载的铂和钨双功能催化剂在甘油氢解制1,3-丙二醇中的性能研究

doi: 10.1016/S1872-5813(21)60101-9
基金项目: 山西省重点研发计划(201903D121033)资助
详细信息
    作者简介:

    徐文峰:1716521419@qq.com

    通讯作者:

    Tel: 0351-4040499,E-mail: niupy@sxicc.ac.cn

    litaojia@sxicc.ac.cn

  • 中图分类号: O643

Study on the performance of platinum and tungsten bifunctional catalyst supported on Al2O3 in the hydrogenolysis of glycerol to 1,3-propanediol

Funds: The project was supported by the Key Research Project of Shanxi Province, China (201903D121033)
  • 摘要: 采用水热晶化法合成了一种高比表面积且富含不饱和五配位铝位点的棒状Al2O3,并利用等体积顺序浸渍法使钨物种先以低聚合态纳米簇的形式锚定在Al2O3载体表面。通过高温热处理方式使铂物种以小粒径高分散的形式与钨物种紧密接触,极大地加强了铂和钨物种之间的相互作用程度,有利于更多活性位结构的产生,显著地提高了甘油氢解制1,3-丙二醇(1,3-PDO)的催化活性。其催化反应性能评价结果表明,在固定床反应器中,反应温度160 ℃,压力5.0 MPa,10%甘油水溶液连续进液时,Pt-WOx/Al2O3催化剂的甘油转化率为75.2%,1,3-PDO的收率达到了33.1%。
  • FIG. 912.  FIG. 912.

    FIG. 912.  FIG. 912.

    图  1  催化剂的XRD谱图

    Figure  1  XRD patterns of the catalysts

    a: WOx/Al2O3-600; b: WOx/Al2O3-700; c: WOx/Al2O3-800; d: WOx/Al2O3-850; e: Pt-WOx/Al2O3-800; A = Al2W3O12

    图  2  样品的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  2  N2 adsorption-desorption isotherms (a) and pore size distribution (b) of samples

    a: Al2O3; b: WOx/Al2O3-800; c: Pt-WOx/Al2O3-600; d: Pt-WOx/Al2O3-700; e: Pt-WOx/Al2O3-800; f: Pt-WOx/Al2O3-850

    图  3  不同Al2O3和WOx/Al2O3样品的 27Al MAS NMR谱图

    Figure  3  27Al MAS NMR spectra of different Al2O3 and WOx/Al2O3 samples

    a: Al2O3-300; b: Al2O3-600; c: Al2O3-700; d: Al2O3-800; e: WOx/Al2O3-600; f: WOx/Al2O3-700; g: WOx/Al2O3-800; h: WOx/Al2O3-850

    图  4  催化剂的Raman吸收光谱谱图

    Figure  4  Raman spectra of the catalysts

    a: WOx/Al2O3-600; b: WOx/Al2O3-700; c: WOx/Al2O3-800; d: WOx/Al2O3-850

    图  5  不同WOx/Al2O3载体的紫外-可见吸收光谱谱图(a);根据紫外-可见吸收光谱谱图得到的禁带宽度(b)

    Figure  5  UV-vis absorption spectra of different WOx/Al2O3 supports (a); Electronic edge values based on UV-vis spectra (b)

    图  6  Al2O3载体的SEM照片和不同催化剂的HR-TEM照片及粒径分布

    Figure  6  SEM image of Al2O3 support (a); HR-TEM images and particle size distribution of different catalysts(b), (d) WOx/Al2O3-800; (c), (e) Pt-WOx/Al2O3-800

    图  7  Pt-WOx/Al2O3-800催化剂的EDS表征

    Figure  7  EDS of Pt-WOx/Al2O3-800 catalyst

    图  8  Pt/Al2O3和Pt-WOx/Al2O3催化剂在不同载体热处理温度下的Pt分散度

    Figure  8  Pt dispersion of Pt/Al2O3 and Pt-WOx/Al2O3 catalysts at different support heat treatment temperatures

    图  9  不同催化剂的H2-TPR谱图

    Figure  9  H2-TPR profiles of various catalysts

    a: Pt/Al2O3; b: WOx/Al2O3-800; c: Pt-WOx/Al2O3-600; d: Pt-WOx/Al2O3-700; e: Pt-WOx/Al2O3-800; f: Pt-WOx/Al2O3-850

    图  10  Pt-WOx/Al2O3催化剂的吡啶吸收红外谱图

    Figure  10  Py-FTIR spectra of pyridine adsorption of Pt-WOx/Al2O3 catalysts

    a: Pt-WOx/Al2O3-600; b: Pt-WOx/Al2O3-700; c: Pt-WOx/Al2O3-800; d: Pt-WOx/Al2O3-850; e: Pt-WOx/Al2O3-800 (co-feeding H2 with pyridine)

    图  11  Pt/Al2O3和Pt-WOx/Al2O3催化剂的Pt 4d (a)和W 4f (b) XPS谱图

    Figure  11  Pt 4d (a) and W 4f (b) XPS spectra of Pt/Al2O3 and Pt-WOx/Al2O3 catalysts

    a: Pt/Al2O3; b: Pt-WOx/Al2O3-600; c: Pt-WOx/Al2O3-700; d: Pt-WOx/Al2O3-800; e: Pt-WOx/Al2O3-850

    图  12  不同催化剂的Pt分散度与1,3-PDO收率之间的相关性

    Figure  12  Correlation between Pt dispersion of different catalysts and the yield of 1,3-PDO

    表  1  载体和催化剂的物化性质

    Table  1  Physico-chemical properties of the supports and the catalysts

    SampleABET/(m2·g−1)vp/(cm3·g−1)dp/nmPt contenta w/%W contentb w/%
    Al2O32600.243.6
    WOx/Al2O3-800820.4519.3
    Pt-WOx/Al2O3-6002250.456.81.97.8
    Pt-WOx/Al2O3-7001760.509.42.08.1
    Pt-WOx/Al2O3-800620.2818.71.98.0
    Pt-WOx/Al2O3-8501030.3814.12.17.4
    ABET: BET surface area; vp: BJH pore volume; dp: average pore diameter; a,b: Pt and W content is detected by ICP
    下载: 导出CSV

    表  2  不同载体和催化剂中Al3+的配位态

    Table  2  Coordination states of Al3+ in different supports and catalysts

    SamplePercentage of different coordinated Al3+ sites/%a
    ${\rm{Al}}_{{\rm{octa}}}^{3 + } $${\rm{Al}}_{{\rm{penta}}}^{3 + } $${\rm{Al}}_{{\rm{tetra}}}^{3 + } $
    Al2O3-300592217
    Al2O3-600532423
    Al2O3-700651025
    Al2O3-80069031
    WOx/Al2O3-60070030
    WOx/Al2O3-70068032
    WOx/Al2O3-80065035
    WOx/Al2O3-85063037
    a: percentages of various coordination states are calculated according to the peak areas of different coordination Al3+ sites
    下载: 导出CSV

    表  3  催化剂的甘油氢解制1,3-PDO反应性能

    Table  3  Catalysis performance of catalysts in hydrogenolysis of glycerol to 1,3-PDO

    CatalystConversion/%Selectivity/%Selectivity ratio(1,3/ 1,2)
    1,3-PDO1,2-PDO1-PO2-PO
    Pt/Al2O35.53.450.02.10.20.07
    Pt-WOx/Al2O3-60018.949.815.811.55.63.15
    Pt-WOx/Al2O3-70056.853.86.119.89.18.82
    Pt-WOx/Al2O3-80075.244.03.932.811.511.28
    Pt-WOx/Al2O3-85054.940.24.928.49.68.20
    reaction conditions: 160 ℃, 5.0 MPa, 10% GLY, glycerol aqueous solution (0.05 mL/min), 1,3-PDO: 1,3-propanediol, 1,2-PDO: 1,2-propanediol, 1-PO: 1-propanol, 2-PO: 2-propanol
    下载: 导出CSV
  • [1] COWIE A L, GARDNER W D. Competition for the biomass resource: Greenhouse impacts and implications for renewable energy incentive schemes[J]. Biomass Bioenergy,2007,31(9):601−607. doi: 10.1016/j.biombioe.2007.06.019
    [2] BEHR A, EILTING J, IRAWADI K, LESCHINSKI J, LINDNER F. Improved utilisation of renewable resources: New important derivatives of glycerol[J]. Green Chem,2008,10(1):13−30. doi: 10.1039/B710561D
    [3] 成诗婕, 曾杨, 裴燕, 范康年, 乔明华, 宗保宁. 短孔道Pt/W-s-SBA-15催化剂的合成及甘油催化氢解制1, 3-丙二醇性能的研究[J]. 化学学报,2019,77(10):1054−1062. doi: 10.6023/A19060219

    CHENG Shi-jie, ZENG Yang, PEI Yan, FAN Kang-nian, QIAO Ming-hua, ZONG Bao-ning. Synthesis and catalysis of Pt/W-s-SBA-15 catalysts with short channel for glycerol hydrogenolysis to 1, 3-propanediol[J]. Acta Chim Sin,2019,77(10):1054−1062. doi: 10.6023/A19060219
    [4] ZHOU C H, BELTRAMINI J N, FAN Y X, LU G Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem Soc Rev,2008,37(3):527−549. doi: 10.1039/B707343G
    [5] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev,2007,107(6):2411−2502. doi: 10.1021/cr050989d
    [6] 方伟国, 姚小兰, 杨继东, 崔芳. 生物基甘油氢解合成1,3-丙二醇催化剂的研究进展[J]. 分子催化,2018,32(6):581−593.

    FANG Wei-guo, YAO Xiao-lan, YANG Ji-dong, CUI Fang. Research progress of catalysts in hydrogenolysis of bioglycerol to 1,3-propanediol[J]. J Mol Catal,2018,32(6):581−593.
    [7] GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, SOULIMANI F, ARIAS P L, WECKHUYSEN B M. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3[J]. Appl Catal B: Environ,2017,204:260−272. doi: 10.1016/j.apcatb.2016.11.016
    [8] LEI N, ZHAO X, HOU B, YANG M, ZHOU M, LIU F, WANG A, ZHANG T. Effective hydrogenolysis of glycerol to 1,3-propanediol over metal-acid concerted Pt/WOx/Al2O3 catalysts[J]. ChemCatChem,2019,11(16):3903−3912. doi: 10.1002/cctc.201900689
    [9] ZHOU W, LI Y, WANG X, YAO D, WANG Y, HUANG S, LI W, ZHAO Y, WANG S, MA X. Insight into the nature of Brönsted acidity of Pt-(WOx)n-H model catalysts in glycerol hydrogenolysis[J]. J Catal,2020,388:154−163. doi: 10.1016/j.jcat.2020.05.019
    [10] MIAO G, SHI L, ZHOU Z, ZHU L, ZHANG Y, ZHAO X, LUO H, LI S, KONG L, SUN Y. Catalyst design for selective hydrodeoxygenation of glycerol to 1,3-propanediol[J]. ACS Catal,2020,10(24):15217−15226. doi: 10.1021/acscatal.0c04167
    [11] FAN Y, CHENG S, WANG H, TIAN J, XIE S, PEI Y, QIAO M, ZONG B. Pt-WOx on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol[J]. Appl Catal B: Environ,2017,217:331−341. doi: 10.1016/j.apcatb.2017.06.011
    [12] GARCÍA-FERNÁNDEZ S, GANDARIAS I, TEJIDO-NÚÑEZ Y, REQUIES J, ARIAS P L. Influence of the support of bimetallic platinum tungstate catalysts on 1,3-propanediol formation from glycerol[J]. ChemCatChem,2017,9(24):4508−4519. doi: 10.1002/cctc.201701067
    [13] ZHU S, GAO X, ZHU Y, LI Y. Promoting effect of WOx on selective hydrogenolysis of glycerol to 1,3-propanediol over bifunctional Pt-WOx/Al2O3 catalysts[J]. J Mol Catal A: Chem,2015,398:391−398. doi: 10.1016/j.molcata.2014.12.021
    [14] ZHOU W, LUO J, WANG Y, LIU J, ZHAO Y, WANG S, MA X. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2[J]. Appl Catal B: Environ,2019,242:410−421. doi: 10.1016/j.apcatb.2018.10.006
    [15] GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, GÜEMEZ M B, BENNICI S, AUROUX A, ARIAS P L. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1,3-propanediol[J]. J Catal,2015,323:65−75. doi: 10.1016/j.jcat.2014.12.028
    [16] WAN C, HU M Y, JAEGERS N R, SHI D, WANG H, GAO F, QIN Z, WANG Y, HU J Z. Investigating the surface structure of γ-Al2O3 supported WOx catalysts by high field 27Al MAS NMR and electronic structure calculations[J]. J Phys Chem C,2016,120(40):23093−23103. doi: 10.1021/acs.jpcc.6b09060
    [17] SHI D, WANG H, KOVARIK L, GAO F, WAN C, HU J Z, WANG Y. WOx supported on γ-Al2O3 with different morphologies as model catalysts for alkanol dehydration[J]. J Catal,2018,363:1−8. doi: 10.1016/j.jcat.2018.04.004
    [18] ZHAO B, LIANG Y, LIU L, HE Q, DONG J. Discovering positively charged Pt for enhanced hydrogenolysis of glycerol to 1,3-propanediol[J]. Green Chem,2020,22(23):8254−8259. doi: 10.1039/D0GC03364B
    [19] ZHU S, QIU Y, ZHU Y, HAO S, ZHENG H, LI Y. Hydrogenolysis of glycerol to 1,3-propanediol over bifunctional catalysts containing Pt and heteropolyacids[J]. Catal Today,2013,212:120−126. doi: 10.1016/j.cattod.2012.09.011
    [20] SALAZAR J B, FALCONE D D, PHAM H N, DATYE A K, PASSOS F B, DAVIS R J. Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO2[J]. Appl Catal A: Gen,2014,482:137−144. doi: 10.1016/j.apcata.2014.06.002
    [21] SONG K, ZHANG H, ZHANG Y, TANG Y, TANG K. Preparation and characterization of WOx/ZrO2 nanosized catalysts with high WOx dispersion threshold and acidity[J]. J Catal,2013,299:119−128. doi: 10.1016/j.jcat.2012.11.011
    [22] KITANO T, HAYASHI T, UESAKA T, SHISHIDO T, TERAMURA K, TANAKA T. Effect of high-temperature calcination on the generation of Brønsted acid sites on WO3/Al2O3[J]. ChemCatChem,2014,6(7):2011−2020. doi: 10.1002/cctc.201400053
    [23] KWAK J, HU J, KIM D, SZANYI J, PEDEN C. Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study[J]. J Catal,2007,251(1):189−194. doi: 10.1016/j.jcat.2007.06.029
    [24] MEI J H K J H D. Coordinatively unsaturated centers as binding sites for active catalyst phases of platinum on gamma-Al2O3[J]. Science,2009,325:1670−1673. doi: 10.1126/science.1176745
    [25] TAYLOR M N, ZHOU W, GARCIA T, SOLSONA B, CARLEY A F, KIELY C J, TAYLOR S H. Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane[J]. J Catal,2012,285(1):103−114. doi: 10.1016/j.jcat.2011.09.019
    [26] ROSS-MEDGAARDEN E I, WACHS I E. Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy[J]. J Phys Chem C,2007,111(41):15089−15099. doi: 10.1021/jp074219c
    [27] MARTINEZ A, PRIETO G, ARRIBAS M, CONCEPCION P, SANCHEZROYO J. Influence of the preparative route on the properties of WOx-ZrO2 catalysts: A detailed structural, spectroscopic, and catalytic study[J]. J Catal,2007,248(2):288−302. doi: 10.1016/j.jcat.2007.03.022
    [28] LEI N, MIAO Z, LIU F, WANG H, PAN X, WANG A, ZHANG T. Understanding the deactivation behavior of Pt/WO3/Al2O3 catalyst in the glycerol hydrogenolysis reaction[J]. Chin J Catal,2020,41(8):1261−1267. doi: 10.1016/S1872-2067(20)63549-5
    [29] PRINS R. Hydrogen spillover. Facts and fiction[J]. Chem Rev,2012,112(5):2714−2738. doi: 10.1021/cr200346z
    [30] ZHANG Q, QIN X X, MU D, PENG F, JI H M, SHEN Z R, HAN X P, HU W B. Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal-support interaction for synergistic oxygen activation[J]. Angew Chem Int Ed Eng,2018,57(30):9351−9356. doi: 10.1002/anie.201804319
    [31] AIHARA T, MIURA H, SHISHIDO T. Effect of perimeter interface length between 2D WO3 monolayer domain and γ-Al2O3 on selective hydrogenolysis of glycerol to 1,3-propanediol[J]. Catal Sci Technol,2019,9(19):5359−5367. doi: 10.1039/C9CY01385G
    [32] CONTRERAS J L, FUENTES G A, ZEIFERT B, SALMONES J. Stabilization of supported platinum nanoparticles on γ-alumina catalysts by addition of tungsten[J]. J Alloy Compd,2009,483(1/2):371−373. doi: 10.1016/j.jallcom.2008.08.144
    [33] FAN Y, CHENG S, WANG H, YE D, XIE S, PEI Y, HU H, HUA W, LI Z H, QIAO M, ZONG B. Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol[J]. Green Chem,2017,19(9):2174−2183. doi: 10.1039/C7GC00317J
    [34] DENG T, LIU H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt-SnOx/Al2O3 catalysts[J]. Green Chem,2013,15(1):116−124. doi: 10.1039/C2GC36088H
    [35] CHAMINAND J, DJAKOVITCH L A, GALLEZOT P, MARION P, PINEL C, ROSIER C C. Glycerol hydrogenolysis on heterogeneous catalysts[J]. Green Chem,2004,6(8):359−361. doi: 10.1039/b407378a
    [36] KIM T Y, PARK D S, CHOI Y, BAEK J, PARK J R, YI J. Preparation and characterization of mesoporous Zr-WOx/SiO2 catalysts for the esterification of 1-butanol with acetic acid[J]. J Mater Chem,2012,22(19):10021−10028. doi: 10.1039/c2jm30904a
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  108
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-13
  • 网络出版日期:  2021-05-31
  • 刊出日期:  2021-09-30

目录

    /

    返回文章
    返回