留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用

高天宇 赵永华 郑择 张启俭 刘会敏 王欢 冯效迁 孟庆润

高天宇, 赵永华, 郑择, 张启俭, 刘会敏, 王欢, 冯效迁, 孟庆润. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用[J]. 燃料化学学报(中英文), 2021, 49(10): 1495-1503. doi: 10.1016/S1872-5813(21)60103-2
引用本文: 高天宇, 赵永华, 郑择, 张启俭, 刘会敏, 王欢, 冯效迁, 孟庆润. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用[J]. 燃料化学学报(中英文), 2021, 49(10): 1495-1503. doi: 10.1016/S1872-5813(21)60103-2
GAO Tian-yu, ZHAO Yong-hua, ZHENG Ze, ZHANG Qi-jian, LIU Hui-min, WANG Huan, FENG Xiao-qian, MENG Qing-run. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1495-1503. doi: 10.1016/S1872-5813(21)60103-2
Citation: GAO Tian-yu, ZHAO Yong-hua, ZHENG Ze, ZHANG Qi-jian, LIU Hui-min, WANG Huan, FENG Xiao-qian, MENG Qing-run. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1495-1503. doi: 10.1016/S1872-5813(21)60103-2

酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用

doi: 10.1016/S1872-5813(21)60103-2
基金项目: 国家自然科学基金(22075120),辽宁省自然科学基金(2019-ZD-0699)和辽宁省教育厅重点公关项目(JZL202015405)资助
详细信息
    通讯作者:

    Tel: 0416-4199013, E-mail: lgdzyh@163.com

  • 中图分类号: O643.3

Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether

Funds: The project was supported by Natural Science Foundation of China (22075120), Liaoning Provincial Natural Science Foundation of China (2019-ZD-0699) and the Key Projects of Liaoning Province Education Department of China (JZL202015405)
  • 摘要: 采用硝酸溶液在不同温度和时间下对钠基蒙脱土进行处理,制备了一系列酸活化蒙脱土(Acid-MMT),并以其为固体酸与商品化的Cu/ZnO/Al2O3物理混合组成双功能催化剂用于二甲醚水蒸气重整(SRD)反应。结果表明,与钠基蒙脱土相比,酸活化蒙脱土的结构、织构及酸性均发生了明显的变化,且变化的程度与酸处理条件密切相关。酸活化蒙脱土的结构和酸性明显影响双功能催化剂的SRD反应性能。其中,在80 ℃处理12 h的酸活化蒙脱土(Acid-MMT-80/12)与Cu/ZnO/Al2O3组成双功能催化剂表现出较好的SRD性能,在p = 0.1 MPa,t = 350 ℃,GHSV = 3000 h−1的反应条件下,二甲醚转化率和氢收率分别达到了97%和94%,且在反应10 h内基本保持不变,表现出了较好的稳定性。
  • FIG. 968.  FIG. 968.

    FIG. 968.  FIG. 968.

    图  1  Na-MMT(a),Acid-MMT-60/4(b),Acid-MMT-80/4(c),Acid-MMT-80/12(d),Acid-MMT-80/24(e),Acid-MMT-100/12(f)的XRD谱图

    Figure  1  XRD patterns of Na-MMT (a), Acid-MMT-60/4 (b), Acid-MMT-80/4 (c), Acid-MMT-80/12 (d), Acid-MMT-80/24 (e), Acid-MMT-100/12 (f)

    图  2  Na-MMT(a),Acid-MMT-60/4(b),Acid-MMT-80/4(c),Acid-MMT-80/12(d),Acid-MMT-80/24(e), Acid-MMT-100/12(f)的FT-IR谱图

    Figure  2  FT-IR spectra of Na-MMT (a), Acid-MMT-60/4 (b), Acid-MMT-80/4 (c), Acid-MMT-80/12 (d), Acid-MMT-80/24 (e), Acid-MMT-100/12 (f)

    图  3  Na-MMT(a),Acid-MMT-60/4(b),Acid-MMT-80/4(c),Acid-MMT-80/12(d),Acid-MMT-80/24(e),Acid-MMT-100/12(f)的N2吸附-脱附等温线

    Figure  3  N2 adsorption-desorption isotherms of Na-MMT (a), Acid-MMT-60/4 (b), Acid-MMT-80/4 (c), Acid-MMT-80/12 (d), Acid-MMT-80/24 (e), Acid-MMT-100/12 (f)

    图  4  Na-MMT(a),Acid-MMT-60/4(b),Acid-MMT-80/4(c),Acid-MMT-80/12(d),Acid-MMT-80/24(e),Acid-MMT-100/12(f)的孔径分布

    Figure  4  Pore size distribution curves by BJH method using desorption branch data of Na-MMT (a), Acid-MMT-60/4 (b), Acid-MMT-80/4 (c), Acid-MMT-80/12 (d), Acid-MMT-80/24 (e), Acid-MMT-100/12 (f)

    图  5  Na-MMT(a),Acid-MMT-60/4(b),Acid-MMT-80/12(c),Acid-MMT-100/12(d)的SEM照片

    Figure  5  SEM images of Na-MMT (a), Acid-MMT-60/4 (b), Acid-MMT-80/12 (c), Acid-MMT-100/12 (d)

    图  6  Na-MMT(a),Acid-MMT-60/4(b),Acid-MMT-80/4(c),Acid-MMT-80/12(d),Acid-MMT-80/24(e),Acid-MMT-100/12(f)的NH3-TPD谱图

    Figure  6  NH3-TPD patterns of Na-MMT (a), Acid-MMT-60/4 (b), Acid-MMT-80/4 (c), Acid-MMT-80/12 (d), Acid-MMT-80/24 (e), Acid-MMT-100/12 (f)

    图  7  不同双功能催化剂的DME转化率(a)及H2收率(b)

    Figure  7  DME conversation (a), H2 yield (b) over different bifunctional catalysts under the conditions of p = 0.1 MPa,t = 350 ℃,GHSV = 3000 h−1

    图  8  反应8 h含碳产物选择性

    Figure  8  Selectivity of the carbon-containing products at TOS of 8 h

    表  1  各样品的XRF分析

    Table  1  Summary of the XRF results of different samples

    SampleSiO2/%Al2O3/%Na2O/%MgO/%CaO/%Fe2O3/%
    Na-MMT64.1624.082.953.332.881.54
    Acid-MMT-60/471.6722.522.670.191.38
    Acid-MMT-80/472.5622.062.750.221.33
    Acid-MMT-80/1275.6320.272.540.191.20
    Acid-MMT-80/2478.5716.772.290.161.07
    Acid-MMT-100/1287.549.440.990.110.61
    下载: 导出CSV

    表  2  各样品的织构特征

    Table  2  Summary of the textural properties of different samples

    SampleBET surface area/(m2·g−1)Pore volume/(cm3·g−1)Average pore size/nm
    Na-MMT120.0724.9
    Acid-MMT-60/41390.174.9
    Acid-MMT-80/41830.245.2
    Acid-MMT-80/122820.517.3
    Acid-MMT-80/242620.7110.8
    Acid-MMT-100/122500.8413.4
    下载: 导出CSV
  • [1] BERNAY C, MARCHAND M, CASSIR M. Prospects of different fuel cell technologies for vehicle applications[J]. J Power Sources,2002,108(1/2):139−152. doi: 10.1016/S0378-7753(02)00029-0
    [2] YANG M, MEN Y, LI S, CHEN G. Enhancement of catalytic activity over TiO2-modifed Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming[J]. Appl Catal A: Gen,2012,433−434:26−34. doi: 10.1016/j.apcata.2012.04.032
    [3] SINGH S, JAIN S, VENKATESWARAN P S, TIWARI A K, NOUNI M R, PANDEY J K, GOEL S. Hydrogen: A sustainable fuel for future of the transport sector[J]. Renewable Sustainable Energy Rev,2015,51:623−633. doi: 10.1016/j.rser.2015.06.040
    [4] SOBYANIN V A, CAVALLARO S, FRENI S. Dimethyl ether steam reforming to feed molten carbonate fuel cells (MCFCs)[J]. Energy Fuels,2000,14(6):1139−1142. doi: 10.1021/ef990201s
    [5] GALVITA V V, SEMIN G L, BELYAEV V D, YURIEVA T M, SOBYANIN V A. Production of hydrogen from dimethyl ether[J]. Appl Catal A: Gen,2001,216(1/2):85−90. doi: 10.1016/S0926-860X(01)00540-3
    [6] INAGAKI R, MANABE R, HISAI Y, KAMITE Y, YABE T, OGO S, SEKINE Y. Steam reforming of dimethyl ether promoted by surface protonics in an electric field[J]. Int J Hydrog Energy,2018,43(31):14310−14318. doi: 10.1016/j.ijhydene.2018.05.164
    [7] 冯冬梅, 左宜赞, 王德峥, 王金福. 二甲醚水蒸气重整制氢的ZSM-5和Cu-Zn 的复合催化体系[J]. 催化学报,2009,30(3):223−229. doi: 10.3321/j.issn:0253-9837.2009.03.010

    FENG Dong-mei, ZUO Yi-zan, WANG De-zheng, WANG Jin-fu. Steam reforming of dimethyl ether over coupled ZSM-5 and Cu-Zn-based catalysts[J]. Chin J Catal,2009,30(3):223−229. doi: 10.3321/j.issn:0253-9837.2009.03.010
    [8] FAUNGNAWAKIJ K, KIKUCHI R, EGUCHI K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether[J]. J Power Sources,2007,164(1):73−79. doi: 10.1016/j.jpowsour.2006.09.072
    [9] SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates[J]. Appl Catal A: Gen,2006,309(2):210−223. doi: 10.1016/j.apcata.2006.05.009
    [10] GAO T Y, ZHAO Y H, ZHANG Q J, WANG H, DAI J, ZHENG Z. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether[J]. React Kinet Mech Catal,2019,128:235−249. doi: 10.1007/s11144-019-01642-5
    [11] FAUNGNAWAKIJ K, KIKUCHI R, SHIMODA N, FUKUNAGA T, EGUCHI K. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether[J]. Angew Chem Int Ed,2008,47:9314−9317. doi: 10.1002/anie.200802809
    [12] DENG X, YANG T, ZHANG Q, CHU Y, LUO J, ZHANG L, LI P. A monolith CuNiFe/γ-Al2O3/Al catalyst for steam reforming of dimethyl ether and applied in a microreactor[J]. Int J Hydrog Energy,2019,44(5):2417−2425.
    [13] KIM D, PARK G, CHOI B, KIM Y B. Reaction characteristics of dimethyl ether (DME) steam reforming catalysts for hydrogen production[J]. Int J Hydrog Energy,2017,42(49):29210−29221.
    [14] HUANG J, DING T, MA K, CAI J, SUN Z, TIAN Y, JIANG Z, ZHANG J, ZHENG L, LI X. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem,2018,10:3862−3871.
    [15] RAMOS E, DAVIN L, ANGURELL I, LEDESMA C, LLORCA J. Improved stability of Pd/Al2O3 prepared from palladium nanoparticles protected with carbosilane dendrons in the dimethyl ether steam reforming reaction[J]. ChemCatChem,2015,7(14):2179−2187. doi: 10.1002/cctc.201500202
    [16] ZANG Y, DONG X, PING D, GENG J, DANG H. Green routes for the synthesis of hierarchical HZSM-5 zeolites with low SiO2/Al2O3 ratios for enhanced catalytic performance[J]. Catal Commun,2018,113:51−54. doi: 10.1016/j.catcom.2018.05.018
    [17] VICENTE J, GAYUBO A G, ERENA J, AGUAYO A T, OLAZAR M, BILBAO J. Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite[J]. Appl Catal B: Environ,2013,130−131(3):73−83.
    [18] LONG X, SONG Y H, LIU Z T, LIU Z W. Insights into the long-term stability of the magnesia modified H-ZSM-5 as an efficient solid acid for steam reforming of dimethyl ether[J]. Int J Hydrog Energy,2019,44(39):21481−21494. doi: 10.1016/j.ijhydene.2019.06.177
    [19] LONG X, ZHANG Q, LIU Z T, QI P, LU J, LIU Z W. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether[J]. Appl Catal B: Environ,2013,134−135:381−388. doi: 10.1016/j.apcatb.2013.01.034
    [20] LÜ J, ZHOU S, MA K, MENG M, TIAN Y. The effect of P modification on the acidity of HZSM-5 and P-HZSM-5/CuO-ZnO-Al2O3 mixed catalysts for hydrogen production by dimethyl ether steam reforming[J]. Chin J Catal,2015,36(8):1295−1303. doi: 10.1016/S1872-2067(15)60883-X
    [21] ZHAO Y H, WANG Y J, HAO Q Q, LIU Z T, LIU Z W. Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt[J]. Fuel Process Technol,2015,136:87−95. doi: 10.1016/j.fuproc.2014.10.019
    [22] HAO Q Q, WANG G W, LIU Z T, LIU Z W. Nanocatalysis for Fuels and Chemicals[M]. Washington, D. C: American Chemical Society (ACS), 2012: 167–193.
    [23] FROST R L, LOCOS O B, RUAN H, KLOPROGGE J T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites[J]. Vib Spectrosc,2011,27(1):1−13.
    [24] THOMMES M, KANEKO K, NEIMARK A V, OLIVIER J P, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K S W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87:1051−1069. doi: 10.1515/pac-2014-1117
    [25] GIL A, KORILI S A, VICENTE M A. Recent advances in the control and characterization of the porous structure of pillared clay catalysts[J]. Catal Rev,2008,50(2):153−221. doi: 10.1080/01614940802019383
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1877
  • HTML全文浏览量:  56
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回