留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction

DU Jia-feng ZHAO Jiang-hong REN Jun

杜佳峰, 赵江红, 任军. C3N4-Ti4O7-MoS2复合催化剂界面效应增强电催化析氢性能[J]. 燃料化学学报(中英文), 2021, 49(7): 986-997. doi: 10.1016/S1872-5813(21)60109-3
引用本文: 杜佳峰, 赵江红, 任军. C3N4-Ti4O7-MoS2复合催化剂界面效应增强电催化析氢性能[J]. 燃料化学学报(中英文), 2021, 49(7): 986-997. doi: 10.1016/S1872-5813(21)60109-3
DU Jia-feng, ZHAO Jiang-hong, REN Jun. Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 986-997. doi: 10.1016/S1872-5813(21)60109-3
Citation: DU Jia-feng, ZHAO Jiang-hong, REN Jun. Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 986-997. doi: 10.1016/S1872-5813(21)60109-3

C3N4-Ti4O7-MoS2复合催化剂界面效应增强电催化析氢性能

doi: 10.1016/S1872-5813(21)60109-3
详细信息
  • 中图分类号: O646

Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction

Funds: The project was supported by the National Natural Science Foundation of China (21776168) and the Natural Science Foundation of Shanxi Province for Excellent Young Scholars (201601D021006)
More Information
  • 摘要: 电催化水裂解是目前最有前景的制氢技术之一。二硫化钼(MoS2)作为最有前途的非贵金属电解水制氢催化剂之一,受有限的催化位点和弱电导率的困扰,迫切地需要被进一步优化。本文采用简单的水热方法构建了C3N4-Ti4O7-MoS2异质催化剂,利用活性组分间的界面相互作用,实现了催化剂活性位点的高度暴露、表面电荷的再分布、氢吸附动力学和稳定性的优化,改进了MoS2的电催化析氢性能。结果表明,界面效应赋予C3N4-Ti4O7-MoS2催化剂优异的电催化活性,即300 mV的过电位下获得50 mA/cm2的电流密度以及较低的Tafel斜率(54 mV/dec),长达33 h的析氢反应后仍保持高的催化活性,其电催化析氢性能优于纯MoS2。结果表明,界面效应作为一种合理改进MoS2基电催化剂的策略,对开发新型高效制氢电催化剂的发展至关重要。
  • FIG. 805.  FIG. 805.

    FIG. 805. 

    Figure  1  Schematic illustration of the synthesis of the MT-CN-x electrocatalyst

    (1): thermal polymerization process; (2): mixing; (3): hydrothermal treatment

    Figure  2  (a) TEM image of C3N4, (b) and (c) are the SEM images of MoS2 and MT-CN-80, (d) local enlarged SEM image of MT-CN-80

    Figure  3  HRTEM images of (a) MoS2 and (b) MT-CN-80, (c) The SEM and elemental mapping images of Mo, S, C, N, O and Ti in MT-CN-80

    Figure  4  XRD patterns of (a) C3N4, MoS2, MT-CN-80 and (b) MT-CN-x

    Figure  5  Raman spectra of MT-CN-x

    Figure  6  FT-IR patterns of (a) C3N4, (b) MoS2 and MT-CN-x

    Figure  7  (a) survey spectrum, (b) Mo 3d and (c) S 2p XPS spectra of MoS2 and MT-CN-80, the (d) C 1s, (e) N 1s, (f) O 1s XPS spectra of MT-CN-80 electrocatalyst

    Figure  8  (a) Polarization curves (LSV) and (b) Tafel slopes of various catalysts, (c) Comparison diagram of catalytic performance with Mo-based composite catalyst, (d) Polarization curves (LSV) and (e) Tafel slopes of MoS2 and MT-CN-x

    Figure  9  (a) Curves of capacitive currents as function of scan rates, (b) Nyquist plots of various catalysts, (c) Durability test for MT-CN-80 before and after 10000 cycles, (d) current-time curve of MT-CN-80 at an overpotential of 300 mV

    Figure  10  Schematic diagram and possible catalytic mechanisms for MT-CN-80 electrocatalyst

    Table  1  Comparison of the double-layer capacitance (Cdl), electrochemical surface areas (ECSA) and roughness (RF) of the as-synthesized catalysts

    CatalystCdl/(mF·cm−2)ECSA/cm2RF
    MoS22.2414.6574.65
    MT-CN-05.6536.96188.33
    M-CN-805.9438.86198.00
    MT-CN-8016.24106.24541.33
    下载: 导出CSV
  • [1] GREELEY J, JARAMILLO T F, BONDE J, CHORKENDORFF I B, NORSKOV J K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nat Mater,2006,5(11):909−913. doi: 10.1038/nmat1752
    [2] HINNEMANN B, MOSES P G, BONDE J, JOERGENSEN K P, NIELSEN J H, HORCH S, CHORKENDORFF I, NOERSKOV J K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc,2005,127(15):5308−5309. doi: 10.1021/ja0504690
    [3] WYPYCH F, WEBER T, PRINS R. Scanning tunneling microscopic investigation of 1T-MoS2[J]. Chem Mater,1998,10:723−727. doi: 10.1021/cm970402e
    [4] ZHOU S, HAN J, SUN J, SROLOVITZ D J. MoS2 edges and heterophase interfaces: Energy, structure and phase engineering[J]. 2D Materials,2017,4(2):025080. doi: 10.1088/2053-1583/aa6d22
    [5] DENG S, LUO M, AI C, ZHANG Y, LIU B, HUANG L, JIANG Z, ZHANG Q, GU L, LIN S, WANG X, YU L, WEN J, WANG J, PAN G, XIA X, TU J. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction[J]. Angew Chem Int Ed,2019,58(45):16289−16296. doi: 10.1002/anie.201909698
    [6] KIBSGAARD J, CHEN Z, REINECKE B N, JARAMILLO T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nat Mater,2012,11(11):963−969. doi: 10.1038/nmat3439
    [7] REN X, PANG L, ZHANG Y, REN X, FAN H, LIU S. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution[J]. J Mater Chem A,2015,3(20):10693−10697. doi: 10.1039/C5TA02198G
    [8] KONG D, WANG H, CHA J J, PASTA M, KOSKI K J, YAO J, CUI Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Lett,2013,13(3):1341−1347. doi: 10.1021/nl400258t
    [9] LI Y, WANG H, XIE L, LIANG Y, HONG G, DAI H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc,2011,133(19):7296−7299. doi: 10.1021/ja201269b
    [10] CHEN L X, CHEN Z W, WANG Y, YANG C C, JIANG Q. Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction[J]. ACS Catal,2018,8(9):8107−8114. doi: 10.1021/acscatal.8b01164
    [11] YU Y, NAM G-H, HE Q, WU X-J, ZHANG K, YANG Z, CHEN J, MA Q, ZHAO M, LIU Z, RAN F-R, WANG X, LI H, HUANG X, LI B, XIONG Q, ZHANG Q, LIU Z, GU L, DU Y, HUANG W, ZHANG H. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals[J]. Nat Chem,2018,10(6):638−643. doi: 10.1038/s41557-018-0035-6
    [12] WANG D, ZHANG X, BAO S, ZHANG Z, FEI H, WU Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution[J]. J Mater Chem A,2017,5(6):2681−2688. doi: 10.1039/C6TA09409K
    [13] LUKOWSKI M A, DANIEL A S, MENG F, FORTICAUX A, LI L, JIN S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J Am Chem Soc,2013,135(28):10274−10277. doi: 10.1021/ja404523s
    [14] LI H, TSAI C, KOH A L, CAI L, CONTRYMAN A W, FRAGAPANE A H, ZHAO J, HAN H S, MANOHARAN H C, ABILD-PEDERSEN F, NøRSKOV J K, ZHENG X. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nat Mater,2016,15(3):364−364.
    [15] YIN Y, HAN J, ZHANG Y, ZHANG X, XU P, YUAN Q, SAMAD L, WANG X, WANG Y, ZHANG Z, ZHANG P, CAO X, SONG B, JIN S. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. J Am Chem Soc,2016,138(25):7965−7972. doi: 10.1021/jacs.6b03714
    [16] JIAO S, YAO Z, XUE F, LU Y, LIU M, DENG H, MA X, LIU Z, MA C, HUANG H, RUAN S, ZENG Y-J. Defect-rich one-dimensional MoS2 hierarchical architecture for efficient hydrogen evolution: Coupling of multiple advantages into one catalyst[J]. Appl Catal B: Environ,2019,258:117964. doi: 10.1016/j.apcatb.2019.117964
    [17] ZHANG H, YU L, CHEN T, ZHOU W, LOU X W D. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution[J]. Adv Funct Mater,2018,28(51):1807086. doi: 10.1002/adfm.201807086
    [18] LIU P, ZHU J, ZHANG J, XI P, TAO K, GAO D, XUE D. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution[J]. ACS Energy Lett,2017,2(4):745−752. doi: 10.1021/acsenergylett.7b00111
    [19] ZANG Y, NIU S, WU Y, ZHENG X, CAI J, YE J, XIE Y, LIU Y, ZHOU J, ZHU J, LIU X, WANG G, QIAN Y. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability[J]. Nat Commun,2019,10(1):1217. doi: 10.1038/s41467-019-09210-0
    [20] XIE J, ZHANG J, LI S, GROTE F, ZHANG X, ZHANG H, WANG R, LEI Y, PAN B, XIE Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. J Am Chem Soc,2013,135(47):17881−17888. doi: 10.1021/ja408329q
    [21] ZHAO Z, LUO S, MA P, LUO Y, WU W, LONG Y, MA J. In situ synthesis of MoS2 on C3N4 to form MoS2/C3N4 with interfacial Mo-N coordination for electrocatalytic reduction of N2 to NH3[J]. ACS Sustainable Chem Eng,2020,8(23):8814−8822. doi: 10.1021/acssuschemeng.0c02763
    [22] LI M, ZHANG L, FAN X, WU M, DU Y, WANG M, KONG Q, ZHANG L, SHI J. Dual synergetic effects in MoS2/pyridine-modified g-C3N4 composite for highly active and stable photocatalytic hydrogen evolution under visible light[J]. Appl Catal B: Environ,2016,190:36−43. doi: 10.1016/j.apcatb.2016.02.060
    [23] LIU Y, ZHANG H, KE J, ZHANG J, TIAN W, XU X, DUAN X, SUN H, O TADE M, WANG S. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution[J]. Appl Catal B: Environ,2018,228:64−74. doi: 10.1016/j.apcatb.2018.01.067
    [24] WU Q M, RUAN J M, ZHOU Z C, SANG S B. Magneli phase titanium sub-oxide conductive ceramic TinO2n-1 as support for electrocatalyst toward oxygen reduction reaction with high activity and stability[J]. J Cent South Univ,2015,22(4):1212−1219. doi: 10.1007/s11771-015-2635-2
    [25] MA D, LI R, ZHENG Z, JIA Z, MENG K, WANG Y, ZHU G, ZHANG H, QI T. NiCoP/CoP nanoparticles supported on Ti4O7 as the electrocatalyst possessing an excellent catalytic performance toward the hydrogen evolution reaction[J]. ACS Sustainable Chem Eng,2018,6(11):14275−14282. doi: 10.1021/acssuschemeng.8b02935
    [26] IBRAHIM K B, SU W N, TSAI M C, CHALA S A, KAHSAY A W, YEH M H, CHEN H M, DUMA A D, DAI H, HWANG B J. Robust and conductive Magnéli phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst[J]. Nano Energy,2018,47:309−315. doi: 10.1016/j.nanoen.2018.03.017
    [27] ZHAO J, LI W, WU S, XU F, DU J, LI J, LI K, REN J, ZHAO Y. Strong interfacial interaction significantly improving hydrogen evolution reaction performances of MoS2/Ti4O7 composite catalysts[J]. Electrochim Acta,2020,337:135850. doi: 10.1016/j.electacta.2020.135850
    [28] GUAN M, WANG C, LI S, DU H, YUAN Y. Understanding the enhanced electrocatalytic hydrogen evolutionvia integrating electrochemically inactive g-C3N4: the effect of interfacial engineering[J]. ACS Sustainable Chem Eng,2020,8(27):10313−10320. doi: 10.1021/acssuschemeng.0c03938
    [29] TANG Y J, WANG Y, WANG X L, LI S L, HUANG W, DONG L Z, LIU C H, LI Y F, LAN Y Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution[J]. Adv Energy Mater,2016,6(12):1600116. doi: 10.1002/aenm.201600116
    [30] YAN J, WU H, CHEN H, PANG L, ZHANG Y, JIANG R, LI L, LIU S. One-pot hydrothermal fabrication of layered β-Ni(OH)2 /g-C3N4 nanohybrids for enhanced photocatalytic water splitting[J]. Appl Catal B: Environ,2016,194:74−83. doi: 10.1016/j.apcatb.2016.04.048
    [31] LEI Z, ZHAN J, TANG L, ZHANG Y, WANG Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage[J]. Adv Energy Mater,2018,8(19):1703482. doi: 10.1002/aenm.201703482
    [32] LIU Q, LI X, HE Q, KHALIL A, LIU D, XIANG T, WU X, SONG L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution[J]. Small,2015,11(41):5556−5564. doi: 10.1002/smll.201501822
    [33] FAN X, XU P, ZHOU D, SUN Y, LI Y C, NGUYEN M A T, TERRONES M, MALLOUK T E. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion[J]. Nano Lett,2015,15(9):5956−5960. doi: 10.1021/acs.nanolett.5b02091
    [34] TAN S J R, SARKAR S, ZHAO X, LUO X, LUO Y Z, POH S M, ABDELWAHAB I, ZHOU W, VENKATESAN T, CHEN W, QUEK S Y, LOH K P. Temperature- and phase-dependent phonon renormalization in 1T′-MoS2[J]. ACS Nano,2018,12(5):5051−5058. doi: 10.1021/acsnano.8b02649
    [35] LI M Y, SHI Y, CHENG C C, LU L S, LIN Y C, TANG H L, TSAI M L, CHU C W, WEI K H, HE J H. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface[J]. Science,2015,349(6247):524−528. doi: 10.1126/science.aab4097
    [36] MOHAMED M A, M. ZAIN M F, JEFFERY MINGGU L, KASSIM M B, SAIDINA AMIN N A, W. SALLEH W N, SALEHMIN M N I, MD NASIR M F, MOHD HIR Z A. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation[J]. Appl Catal B: Environ,2018,236:265−279. doi: 10.1016/j.apcatb.2018.05.037
    [37] MAITY N, MANDAL A, NANDI A K. High dielectric poly(vinylidene fluoride) nanocomposite films with MoS2 using polyaniline interlinker via interfacial interaction[J]. J Mater Chem C,2017,5(46):12121−12133. doi: 10.1039/C7TC03593D
    [38] QU D, ZHENG M, DU P, ZHOU Y, ZHANG L, LI D, TAN H, ZHAO Z, XIE Z, SUN Z. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale,2013,5(24):12272−12277. doi: 10.1039/c3nr04402e
    [39] SUN D, BAN R, ZHANG P-H, WU G-H, ZHANG J-R, ZHU J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon,2013,64:424−434. doi: 10.1016/j.carbon.2013.07.095
    [40] CHANG Y-H, NIKAM R D, LIN C-T, HUANG J-K, TSENG C-C, HSU C-L, CHENG C-C, SU C-Y, LI L-J, CHUA D H C. Enhanced electrocatalytic activity of MoSx on TCNQ-treated electrode for hydrogen evolution reaction[J]. ACS Appl Mater Interfaces,2014,6(20):17679−17685. doi: 10.1021/am5039592
    [41] QIN C, FAN A, ZHANG X, WANG S, YUAN X, DAI X. Interface engineering: Few-layer MoS2 coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting[J]. J Mater Chem A,2019,7(48):27594−27602. doi: 10.1039/C9TA10547F
    [42] ZHOU W, YIN Z, DU Y, HUANG X, ZENG Z, FAN Z, LIU H, WANG J, ZHANG H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities[J]. Small,2013,9(1):140−147. doi: 10.1002/smll.201201161
    [43] YANG Y, WANG Y, HE H-L, YAN W, FANG L, ZHANG Y-B, QIN Y, LONG R, ZHANG X-M, FAN X. Covalently connected Nb4N5-xOx-MoS2 heterocatalysts with desired electron density to boost hydrogen evolution[J]. ACS Nano,2020,14(4):4925−4937. doi: 10.1021/acsnano.0c01072
    [44] ZHAO S, LI C, WANG L, LIU N, QIAO S, LIU B, HUANG H, LIU Y, KANG Z. Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability[J]. Carbon,2016,99:599−606. doi: 10.1016/j.carbon.2015.12.088
    [45] VRUBEL H, MERKI D, HU X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles[J]. Energy Environ Sci,2012,5(3):6136−6144. doi: 10.1039/c2ee02835b
    [46] ZHENG X, XU J, YAN K, WANG H, WANG Z, YANG S. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chem Mater,2014,26(7):2344−2353. doi: 10.1021/cm500347r
    [47] YAN Y, GE X, LIU Z, WANG J Y, LEE J M, WANG X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J]. Nanoscale,2013,5(17):7768−7771. doi: 10.1039/c3nr02994h
    [48] KOROTEEV V O, BULUSHEVA L G, ASANOV I P, SHLYAKHOVA E V, OKOTRUB A V. Charge transfer in the MoS2/carbon nanotube composite[J]. J Phys Chem C,2011,115(43):21199−21204. doi: 10.1021/jp205939e
    [49] WU D, HU S, XUE H, HOU X, DU H, XU G, YUAN Y. Protonation and microwave-assisted heating induced excitation of lone-pair electrons in graphitic carbon nitride for increased photocatalytic hydrogen generation[J]. J Mater Chem A,2019,7(35):20223−20228. doi: 10.1039/C9TA05135J
    [50] DING Q, SONG B, XU P, JIN S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds[J]. Chem,2016,1(5):699−726. doi: 10.1016/j.chempr.2016.10.007
    [51] WANG X, VASILEFF A, JIAO Y, ZHENG Y, QIAO S Z. Electronic and structural engineering of carbon‐based metal‐free electrocatalysts for water splitting[J]. Adv Mater,2018,31(13):1803625.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2627
  • HTML全文浏览量:  309
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 修回日期:  2021-04-08
  • 网络出版日期:  2021-06-04
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回