留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas

WANG Bao-wei WANG Ting-ting ZHAO Jun LI Zhen-hua XU Yan MA Xin-bin

王保伟, 王婷婷, 赵俊, 李振花, 徐艳, 马新宾. 磷前驱体对金属磷化物甲烷化催化性能的影响[J]. 燃料化学学报(中英文), 2021, 49(7): 952-959. doi: 10.1016/S1872-5813(21)60110-X
引用本文: 王保伟, 王婷婷, 赵俊, 李振花, 徐艳, 马新宾. 磷前驱体对金属磷化物甲烷化催化性能的影响[J]. 燃料化学学报(中英文), 2021, 49(7): 952-959. doi: 10.1016/S1872-5813(21)60110-X
WANG Bao-wei, WANG Ting-ting, ZHAO Jun, LI Zhen-hua, XU Yan, MA Xin-bin. Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 952-959. doi: 10.1016/S1872-5813(21)60110-X
Citation: WANG Bao-wei, WANG Ting-ting, ZHAO Jun, LI Zhen-hua, XU Yan, MA Xin-bin. Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 952-959. doi: 10.1016/S1872-5813(21)60110-X

磷前驱体对金属磷化物甲烷化催化性能的影响

doi: 10.1016/S1872-5813(21)60110-X
详细信息
  • 中图分类号: TQ032.4

Effect of phosphorus precursor on the catalytic performance of metal phosphides in the methanation of syngas

Funds: The project was supported by the National High Technology Research and Development Program of China (863 Project, 2015AA050504)
More Information
  • 摘要: 采用氢气程序升温还原方法制备了系列金属磷化物催化剂,研究了磷前驱体和H2/CO比对其甲烷化催化性能的影响。结果表明,与磷酸氢二铵相比,由植酸制备的金属磷化物催化剂具有较高的甲烷化活性;植酸作为螯合剂可以有效地分散金属前驱体,降低还原温度,使催化剂具有较高的比表面积和较小的晶粒尺寸,并更好地还原为纯磷化物晶相。不同金属磷化物催化剂的活性顺序为MoP > WP > CoP > NiP。高H2/CO比有利于甲烷化反应进行,随着反应物H2/CO比的增加,所有磷化物催化剂的甲烷选择性都增加。
  • FIG. 801.  FIG. 801.

    FIG. 801. 

    Figure  1  Methanation performance of various metal phosphide catalysts

    (a): with DAP as phosphorus precursor; (b): with PA as phosphorus precursorreaction conditions: 550 °C, 3.0 MPa, 5000 mL/(g·h)

    Figure  2  XRD patterns of various metal phosphide catalysts

    (a): with DAP as precursor; (b): with PA as precursor

    Figure  3  H2-TPR profiles of various metal phosphide catalysts

    (a): with DAP as precursor; (b): with PA as precursor

    Table  1  Methanation performance of various metal phosphide catalysts at 550 °C, 3.0 MPa, and 5000 mL/(g·h)

    CatalystH2/CO = 1 H2/CO = 3
    $x_{ {\rm{CO} } }$/%$ s_{{\rm{CO}}_2} $/%$ s_{{\rm{CH}}_4} $/%$ s_{{\rm{C}}_2{\rm{H}}_6} $/% $ x_{{\rm{CO}}} $/%$ s_{{\rm{CO}}_2} $/%$ s_{{\rm{CH}}_4} $/%$ s_{{\rm{C}}_2{\rm{H}}_6} $/%
    MoP-DAP50.145.853.11.1 59.641.957.20.9
    MoP-PA65.646.851.91.372.531.967.50.6
    WP-DAP17.341.957.50.622.832.067.50.5
    WP-PA21.343.056.01.023.832.966.20.9
    CoP-DAP5.820.078.11.99.410.188.81.1
    CoP-PA12.423.675.80.417.316.882.11.1
    NiP-DAP3.213.484.02.63.47.090.32.7
    NiP-PA3.214.384.11.64.312.086.31.7
    下载: 导出CSV

    Table  2  Textural properties determined by N2 sorption of various phosphide catalysts

    CatalystSurface area A/(m2·g−1)Pore volume v/(cm3·g−1)Average pore size d/nmParticle size d/nm
    MoP-DAP3.70.02227.019.7
    MoP-PA40.10.0108.914.7
    WP-DAP3.20.02455.535.5
    WP-PA27.40.08311.122.9
    CoP-DAP1.00.00352.690.8
    CoP-PA10.90.06230.238.1
    NiP-DAP4.00.02948.125.8
    NiP-PA8.10.02138.319.7
    下载: 导出CSV
  • [1] KUSTOV A L, FREY A M, LARSEN K E, JOHANNESSEN T, NØRSKOV J K, CHRISTENSEN C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization[J]. Appl Catal A: Gen,2007,320:98−104. doi: 10.1016/j.apcata.2006.12.017
    [2] YAN Shuang-hua, SHUANG Jian-yong, HU Si-bin. Methane synthesis technology in coal to natural gas process[J]. Chem Fert Des,2010,48(2):19−21+32.
    [3] MENG F, LI X, SHAW G M, SMITH P J, MORGAN D J, PERDJON M, LI Z. Sacrificial carbon strategy toward enhancement of slurry methanation activity and stability over Ni-Zr/SiO2 catalyst[J]. Ind Eng Chem Res,2018,57(14):4798−4806. doi: 10.1021/acs.iecr.7b05157
    [4] MENG F, LI X, LI M, CUI X, LI Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor[J]. Chem Eng J,2017,313:1548−1555. doi: 10.1016/j.cej.2016.11.038
    [5] WANG G, XU S. Research progress of coal based alternative/synthetic natural gas technology[J]. Petrochem Technol,2016,45(1):1−9.
    [6] MENG F, LI X, LV X, LI Z. CO hydrogenation combined with water-gas-shift reaction for synthetic natural gas production: A thermodynamic and experimental study[J]. Int J Coal Sci Technol,2018,5(4):439−451.
    [7] LIU C, WANG W, XU Y, LI Z, WANG B, MA X. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst[J]. Appl Surf Sci,2018,441:482−490. doi: 10.1016/j.apsusc.2018.02.019
    [8] HU H, WANG W, LIU Z, WANG B, LI Z, MA X. Sulfur-resistant CO methanation to CH4 over MoS2/ZrO2 catalysts: Support size effect on morphology and performance of Mo species[J]. Catal Lett,2018,148(8):2585−2595. doi: 10.1007/s10562-018-2438-9
    [9] HULLIGER F. Crystal chemistry of the chalcogenides and pnictides of the transition elements[J]. Struct Bond,1968,4(6):83−229.
    [10] PÖTTGEN R, HÖNLE W, SCHNERING H G. Phosphides: Solid - State Chemistry [M]. 2006, 1−16.
    [11] YANG Y, ZHONG Y, SHI Q, WANG Z, SUN K, WANG H. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions[J]. Angew Chem Int Ed,2018,57(47):15549−15552. doi: 10.1002/anie.201808311
    [12] PRYTZ Ø, LØVVIK O, TAFTØ J. Comparison of theoretical and experimental dielectric functions: Electron energy-loss spectroscopy and density-functional calculations on skutterudites[J]. Phys Rev B,2006,74:245109.
    [13] OSHTRAKH MI, LARIONOV MY, GROKHOVSKY VI, SEMIONKIN VA. Study of rhabdite (iron nickel phosphide) microcrystals extracted from Sikhote–Alin iron meteorite by magnetization measurements and Mössbauer spectroscopy[J]. Mater Chem Phys,2011,130(1):373−380.
    [14] TEGUS O, BRÜCK E, BUSCHOW K H, DE BOER F R. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature,2002,415(6868):150−152. doi: 10.1038/415150a
    [15] BARZ H, KU H C, MEISNER G P, FISK Z, MATTHIAS B T. Ternary transition metal phosphides: High-temperature superconductors[J]. Proc Natl Acad Sci USA,1980,77(6):3132−3134. doi: 10.1073/pnas.77.6.3132
    [16] MONTESINOS-CASTELLANOS A, ZEPEDA T A, PAWELEC B, LIMA E, FIERRO J L G, OLIVAS A, DE LOS REYES H J A. Influence of reduction temperature and metal loading on the performance of molybdenum phosphide catalysts for dibenzothiophene hydrodesulfurization[J]. Appl Catal A: Gen,2008,334(1):330−338.
    [17] GUO C, TIRUMALA VENKATESWARA RAO K, REYHANITASH E, YUAN Z, ROHANI S, XU C, HE S. Novel inexpensive transition metal phosphide catalysts for upgrading of pyrolysis oil via hydrodeoxygenation[J]. AIChE J,2016,62(10):3664−3672. doi: 10.1002/aic.15286
    [18] INFANTES-MOLINA A, MORENO-LEÓN C, PAWELEC B, FIERRO J L G, RODRIGUEZ-CASTELLON E, JIMÉNEZ-LÓPEZ A. Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method[J]. Appl Catal B: Environ,2012,113-114:87−99. doi: 10.1016/j.apcatb.2011.11.022
    [19] WANG D, ZHANG D, TANG C, ZHOU P, WU Z, FANG B. Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles[J]. Catal Sci Technol,2016,6(6):1952−1956. doi: 10.1039/C5CY01457C
    [20] KIBSGAARD J, JARAMILLO TF. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction[J]. Angew Chem Int Ed,2014,53(52):14433−14437. doi: 10.1002/anie.201408222
    [21] CHEN J, YANG Y, SHI H, LI M, CHU Y, PAN Z, YU X. Regulating product distribution in deoxygenation of methyl laurate on silica-supported Ni-Mo phosphides: Effect of Ni/Mo ratio[J]. Fuel,2014,129:1−10. doi: 10.1016/j.fuel.2014.03.049
    [22] ZHANG G, WANG G, LIU Y, LIU H, QU J, LI J. Highly active and stable catalysts of phytic acid-derivative transition metal p for full water splitting[J]. J Am Chem Soc,2016,138(44):14686−14693. doi: 10.1021/jacs.6b08491
    [23] WANG X, NA Z, YIN D, WANG C, WU Y, HUANG G, WANG L. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation[J]. ACS Nano,2018,12(12):12238−12246. doi: 10.1021/acsnano.8b06039
    [24] ZHUANG M, OU X, DOU Y, ZHANG L, ZHANG Q, WU R, DING Y, SHAO M, LUO Z. Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation[J]. Nano Lett,2016,16(7):4691−4698. doi: 10.1021/acs.nanolett.6b02203
    [25] PU Z, AMIINU IS, ZHANG C, WANG M, KOU Z, MU S. Phytic acid-derivative transition metal phosphides encapsulated in N, P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range[J]. Nanoscale,2017,9(10):3555−3560. doi: 10.1039/C6NR09883E
    [26] ZHANG C, PU Z, AMIINU I S, ZHAO Y, ZHU J, TANG Y, MU S. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions[J]. Nanoscale,2018,10(6):2902−2907. doi: 10.1039/C7NR08148K
    [27] WANG B, DING G, SHANG Y, LV J, WANG H, WANG E, LI Z, MA X, QIN S, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A: Gen,2012,431-432:144−150. doi: 10.1016/j.apcata.2012.04.029
    [28] LIU Z, XU Y, CHENG J, WANG W, WANG B, LI Z, MA X. Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation[J]. Appl Surf Sci,2018,433:730−738. doi: 10.1016/j.apsusc.2017.10.103
    [29] OYAMA S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides[J]. J Catal,2003,216(1):343−352.
    [30] STINNER C, TANG Z, HAOUAS M, WEBER T, PRINS R. Preparation and 31P NMR characterization of nickel phosphides on silica[J]. J Catal,2002,208(2):456−466.
    [31] CHEN J, SHI H, LI L, LI K. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B: Environ,2014,144:870−884. doi: 10.1016/j.apcatb.2013.08.026
    [32] LIANG X, ZHANG D, WU Z, WANG D. The Fe-promoted MoP catalyst with high activity for water splitting[J]. Appl Catal A: Gen,2016,524:134−138. doi: 10.1016/j.apcata.2016.06.029
    [33] WANG D, SHEN Y, ZHANG X, WU Z. Enhanced hydrogen evolution from the MoP/C hybrid by the modification of ketjen black[J]. J Mater Sci,2017,52(6):3337−3343. doi: 10.1007/s10853-016-0621-1
    [34] PRINS R, BUSSELL M E. Metal phosphides: Preparation, characterization and catalytic reactivity[J]. Catal Lett,2012,142(12):1413−1436. doi: 10.1007/s10562-012-0929-7
    [35] WHIFFEN V M L, SMITH K J, STRAUS S K. The influence of citric acid on the synthesis and activity of high surface area MoP for the hydrodeoxygenation of 4-methylphenol[J]. Appl Catal A: Gen,2012,419−420:111−125. doi: 10.1016/j.apcata.2012.01.018
    [36] WANG R, SMITH K J. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over high surface area metal phosphides[J]. Appl Catal A: Gen,2009,361(1):18−25.
    [37] XIAO P, SK M A, THIA L, GE X, LIM R J, WANG J-Y, LIM K H, WANG X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Energy Environ Sci,2014,7(8):2624−2629. doi: 10.1039/C4EE00957F
    [38] BU P, CECILIA J A, OYAMA S T, TAKAGAKI A, INFANTES-MOLINA A, ZHAO H, LI D, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ LÓPEZ A. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound[J]. J Catal,2012,294:184−198. doi: 10.1016/j.jcat.2012.07.021
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  112
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-02-10
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回