留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理温度对Pt/TiO2纳米带复合物催化HCHO氧化性能的影响

崔维怡 王希越 谭乃迪

崔维怡, 王希越, 谭乃迪. 热处理温度对Pt/TiO2纳米带复合物催化HCHO氧化性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60113-5
引用本文: 崔维怡, 王希越, 谭乃迪. 热处理温度对Pt/TiO2纳米带复合物催化HCHO氧化性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60113-5
CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60113-5
Citation: CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60113-5

热处理温度对Pt/TiO2纳米带复合物催化HCHO氧化性能的影响

doi: 10.1016/S1872-5813(21)60113-5
基金项目: 国家自然科学基金(51805207);吉林省教育厅2021科学技术研究规划项目(JJKH20210235KJ)资助
详细信息
    作者简介:

    崔维怡:cuiweiyi0119@163.com

    通讯作者:

    E-mail: tannd0119@163.com

  • 中图分类号: TQ426

Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation

Funds: The project was supported by the National Science Foundation of China (Grant No. 51805207); 2021 Science and Technology Research and Planning Project of Education Department of Jilin province (JJKA20210235KJ)
  • 摘要: 采用水热合成法并结合酸处理制备出TiO2纳米带,进行不同温度热处理,在TiO2纳米带上沉积Pt纳米颗粒(NPs),制备出一系列Pt/TiO2纳米带复合物,用于甲醛室温催化氧化。通过各种技术对催化剂进行表征,结果表明,热处理温度对TiO2纳米带的相组成和表面结构,以及表面的氧空位和羟基的数量有较大的影响。在室温下,600 ºC热处理的TiO2纳米带负载Pt催化剂具有更为丰富的氧空位,有利于吸附氧的活化,并形成较多的Ti–(OH)x–Pt物种,表现出较高的催化活性,在25 ºC,相对湿度为55%时,甲醛的转化率为91.6%。
  • 图  1  催化剂性能评价流程简图

    Figure  1  Schematic flow diagram of the catalytic performance testing

    1: H2; 2: N2; 3: O2; 4,6: flowmeter; 5: HCHO; 7: triple valve; 8: reactor; 9: chromatography; 10: exhaust; 11: carrier gas; 12: off gas

    图  2  Pt/TiO2催化剂的XRD谱图

    a: Pt/TiO2(A); b: Pt/TiO2(R); c: PT-C200; d: PT-C300; e: PT-C400; f: PT-C500; g: PT-C600; h: PT-C700

    Figure  2  XRD patterns of the Pt/TiO2 catalysts

    图  3  Pt/TiO2催化剂的SEM电镜照片

    (a): PT-C300; (b): PT-C300; (c): PT-C600; (d): PT-C600

    Figure  3  SEM images of Pt/TiO2 catalyst

    图  4  Pt/TiO2催化剂的HRTEM电镜z照片

    (a): PT-C300; (b): PT-C300; (c): PT-C600; (d): PT-C600

    Figure  4  HRTEM images of Pt/TiO2 catalyst

    图  5  TiO2和Pt/TiO2的Raman光谱谱图

    a: PT-C600; b: T-C600; c: PT-C300; d: T-C300

    Figure  5  Raman spectra of TiO2 and Pt/TiO2

    图  6  PT-C300和PT-C600催化剂的XPS谱图

    A:survey spectra; B:Pt 4f; C:Ti 2p; D:O 1s a: PT-C300; b: PT-C600

    Figure  6  XPS spectra of PT-C300 and PT-C600 catalysts

    图  7  TiO2和Pt/TiO2 H2-TPR表征

    a: T-C300; b: T-C600; c: PT-C300; d: PT-C600

    Figure  7  Temperature programmed reduction (H2 -TPR) profiles of TiO2和Pt/TiO2

    图  8  Pt/TiO2催化剂的甲醛催化氧化活性

    a: PT-C200; b: PT-C300; c: PT-C400; d: PT-C500; e: PT-C600; f: PT-C700; g: Pt/TiO2(A); h: Pt/TiO2(R)

    Figure  8  HCHO catalytic oxidation activities of the Pt/TiO2 catalysts

    (reaction conditions: HCHO 375 mg/m3, O2 = 20%, N2 balance, RH = 55%, GHSV: 60000 cm3/(g·h))

    图  9  PT-C600催化剂的甲醛氧化稳定性

    Figure  9  Stability test of PT-C600 for HCHO oxidation (reaction conditions: 25 ºC, HCHO 375 mg/m3, O2 = 20%, N2 balance, RH = 55%, GHSV: 60000 cm3/(g·h))

    表  1  Pt/TiO2催化剂的物化性质和Pt金属分散度

    Table  1  Physical properties and Pt dispersion of the Pt/TiO2 catalyst

    Pt/TiO2
    catalyst
    ABET/
    (m2·g−1)
    Pore volume /
    (m3·g−1)
    Pore size /
    nm
    Pt
    dispersion/%
    PT-C200810.228.942.2
    PT-C300770.229.340.4
    PT-C400700.219.738.2
    PT-C500640.1811.237.2
    PT-C600560.1612.037.1
    PT-C700510.1512.534.3
    下载: 导出CSV

    表  2  PT-C300和PT-C600催化剂的XPS分析结果

    Table  2  XPS analysis results for the catalysts of PT-C300 and PT-C600.

    CatalystBE (eV)surface atom ratio
    Pt 4f7/2(Pt 4f5/2)OII (OI)Ti 2pOII /(OI+ OIIPt/TiPt2+/Pt0
    PT-C30070.90(74.10)531.80(529.75)458.750.4620.0410.767
    PT-C60070.60(74.00)531.85(529.80)458.350.6180.0360.361
    OII /(OI+ OII) 和Pt2+/Pt0由XPS PEAK 4.1拟合峰的相应面积计算得到
    下载: 导出CSV
  • [1] TANG X J, BAI Y, DUONG A, SMITH M T, LI L Y, ZHANG L P. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environ Int,2009,35(8):1210−1224. doi: 10.1016/j.envint.2009.06.002
    [2] CHI C C, CHEN W D, GUO M, WENG M L, YAN G, SHEN X Y. Law and features of TVOC and formaldehyde pollution in urban indoor air[J]. Atmos Environ,2016,132(5):85−90.
    [3] JHON Q T, SEBASTIEN Y, BELLAT J P, GIRAUDON J M, LAMONIER J F. Formaldehyde: Catalytic oxidation as a promising soft way of elimination[J]. ChemSusChem,2013,6:578−592. doi: 10.1002/cssc.201200809
    [4] HUANG H B, XU Y, FENG Q Y, LEUNG D Y C. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catal Sci Technol,2015,5(2):2649−2669.
    [5] NIE L H, YU J G, JARONIEC M, TAO F. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catal Sci Technol,2016,6(11):3649−3669. doi: 10.1039/C6CY00062B
    [6] 拜冰阳, 乔琦, 李俊华, 郝吉明. 甲醛催化氧化催化剂的研究进展[J]. 催化学报,2016,37(1):102−122. doi: 10.1016/S1872-2067(15)61007-5

    BAI Bing-yang, QIAO Qi, LI Jun-hua, HAO Ji-ming. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chin J Catal,2016,37(1):102−122. doi: 10.1016/S1872-2067(15)61007-5
    [7] GUO J H, LIN C X, JIANG C J, ZHANG P Y. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Appl Surf Sci,2019,475:237−255. doi: 10.1016/j.apsusc.2018.12.238
    [8] HUANG H B, LEUNG D Y C. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature[J]. J Catal,2011,280:60−67. doi: 10.1016/j.jcat.2011.03.003
    [9] ZHANG C B, LIU F D, ZHAI Y P, ARIGA H, YI N, LIU Y C, ASAKURA K, FLYTZANI-STEPHANOPOULOS M, HE H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew Chem Int Ed,2012,51(38):9628−9632. doi: 10.1002/anie.201202034
    [10] QI L F, CHENG B, YU J G, HO W K. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. J Hazard Mater,2016,301:522−530. doi: 10.1016/j.jhazmat.2015.09.026
    [11] CHEN H Y, RUI Z B, JI H B. Monolith-like TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Ind Eng Chem Res,2014,53:7629−7636. doi: 10.1021/ie5004009
    [12] NIE L H, YU J G, FU J Wl. Complete decomposition of formaldehyde at room temperature over a platinum-decorated hierarchically porous electrospun titania nanofiber mat[J]. ChemCatChem,2014,6:1983−1989. doi: 10.1002/cctc.201301105
    [13] NIE L H, ZHOU P, YU J G, JARONIE Mietek. Deactivation and regeneration of Pt/TiO2 nanosheet-type catalysts with exposed (001) facets for room temperature oxidation of formaldehyde[J]. J Mol Catal A: Chemi,2014,390:7−13. doi: 10.1016/j.molcata.2014.02.033
    [14] CUI W Y, XUE D, YUAN X L, ZHENG B, JIA M J, ZHANG W X. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions[J]. Appl Surf Sci,2017,411:105−112. doi: 10.1016/j.apsusc.2017.03.169
    [15] SU Y, JI K M, XUN J Y, ZHANG K, LIU P, ZHAO L. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst[J]. Chin J Chem Eng,2021,29:190−195. doi: 10.1016/j.cjche.2020.04.024
    [16] WANG Y, LI Z, CAO Y, LI F, ZHAO W, LIN X Q, YANG J B. Fabrication of novel Ag-TiO2 nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells[J]. J Alloy Compd,2016,677:294−301. doi: 10.1016/j.jallcom.2016.03.266
    [17] LIN J J, SHEN J X, WANG T L, WANG R J, LIU H, CUI J J, ZHOU W J. Enhancement of photocatalytic properties of TiO2 nanobelts through surface-coarsening and surface nanoheterostructure construction[J]. Mater Sci Eng B,2011,176:921−925. doi: 10.1016/j.mseb.2011.05.018
    [18] JIANG Z, YANG Y, SHANGGUAN W, JIANG Z. Influence of support and metal precursor on the state and CO catalytic oxidation activity of platinum supported on TiO2[J]. J Phys Chem C,2012,116:19396−19404. doi: 10.1021/jp3061009
    [19] SARKAR D, CHATTOPADHYAY K K. Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property[J]. ACS Appl Mater Interfaces,2014,6:10044−10059. doi: 10.1021/am502379q
    [20] XU F Y, LE Y, CHENG B, JIANG C X. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Appl Surf Sci,2017,426:333−341. doi: 10.1016/j.apsusc.2017.07.096
    [21] QI L F, HO W, WANG J L, ZHANG P Y, YU J G. Enhanced catalytic activity of hierarchically macro-/mesoporous Pt/TiO2 toward room-temperature decomposition of formaldehyde[J]. Catal Sci Technol,2015,5:2366−2377. doi: 10.1039/C4CY01712A
    [22] XU F Y, LE Y, CHENG B, JIANG C J. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. J Hazard Mater,2016,301:522−530. doi: 10.1016/j.jhazmat.2015.09.026
    [23] ZENG L, SONG W L, LI M H, ZENG D W, XIE C S. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature[J]. Appl Catal B: Environ,2014,147:490−498. doi: 10.1016/j.apcatb.2013.09.013
    [24] WANG G M, WANG H Y, LING Y C, TANG Y C, YANG X Y, FITZMORRIS R C, WANG C C, ZHANG J Z, LI Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Lett,2011,11:3026−3033. doi: 10.1021/nl201766h
    [25] NIE L H, YU J G, LI X Y, CHENG B, LIU G, JARONIEC M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde[J]. Environ Sci Technol,2013,47:2777−2783. doi: 10.1021/es3045949
    [26] LIU L Q, ZHOU F, WANG L G, QI X J, SHI F, DENG Y Q. Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeOx support for oxygen supply during reactions[J]. J Catal,2010,274:1−10. doi: 10.1016/j.jcat.2010.05.022
    [27] PENG J X, WANG S D. Correlation between microstructure and performance of Pt/TiO2 catalysts for formaldehyde catalytic oxidation at ambient temperature: effects of hydrogen pretreatment[J]. J Phys Chem C,2007,111:9897−9904.
    [28] ZENG L, SONG W L, LI M H, ZENG D W, XIE C S. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature[J]. Appl Catal B: Environ,2014,147:490−498. doi: 10.1016/j.apcatb.2013.09.013
    [29] AHMAD W, PARK E, LEE H, KIM J Y, KIM B C, JURNG J, OH Y. Defective domain control of TiO2 support in Pt/TiO2 for room temperature formaldehyde (HCHO) remediation[J]. Appl Surf Sci,2021,538:147504. doi: 10.1016/j.apsusc.2020.147504
    [30] LI Y B, WANG C Y, ZHANG C B, HE H. Formaldehyde oxidation on Pd/TiO2 catalysts at room temperature: The effects of surface oxygen vacancies[J]. Top Catal,2020,63:1−7. doi: 10.1007/s11244-020-01254-7
    [31] ZHANG C B, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Appl Catal B: Environ,2006,65:37−43. doi: 10.1016/j.apcatb.2005.12.010
    [32] PENG J X, WANG S D. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures[J]. Appl Catal B: Environ,2007,73:282−291. doi: 10.1016/j.apcatb.2006.12.012
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-06-12

目录

    /

    返回文章
    返回