留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnAlOx/ZSM-5复合催化剂用于苯与合成气一步制备烷基苯

韩腾飞 刘建超 杜明仙 徐红 董晋湘 李学宽 葛晖

韩腾飞, 刘建超, 杜明仙, 徐红, 董晋湘, 李学宽, 葛晖. ZnAlOx/ZSM-5复合催化剂用于苯与合成气一步制备烷基苯[J]. 燃料化学学报(中英文), 2021, 49(11): 1620-1630. doi: 10.1016/S1872-5813(21)60123-8
引用本文: 韩腾飞, 刘建超, 杜明仙, 徐红, 董晋湘, 李学宽, 葛晖. ZnAlOx/ZSM-5复合催化剂用于苯与合成气一步制备烷基苯[J]. 燃料化学学报(中英文), 2021, 49(11): 1620-1630. doi: 10.1016/S1872-5813(21)60123-8
HAN Teng-fei, LIU Jian-chao, DU Ming-xian, XU Hong, DONG Jin-xiang, LI Xue-kuan, GE Hui. One-pass conversion of benzene and syngas to alkylbenzenes by ZnAlOx/ZSM-5 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1620-1630. doi: 10.1016/S1872-5813(21)60123-8
Citation: HAN Teng-fei, LIU Jian-chao, DU Ming-xian, XU Hong, DONG Jin-xiang, LI Xue-kuan, GE Hui. One-pass conversion of benzene and syngas to alkylbenzenes by ZnAlOx/ZSM-5 composite catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1620-1630. doi: 10.1016/S1872-5813(21)60123-8

ZnAlOx/ZSM-5复合催化剂用于苯与合成气一步制备烷基苯

doi: 10.1016/S1872-5813(21)60123-8
基金项目: 国家自然科学基金面上项目(22078351)资助
详细信息
    作者简介:

    韩腾飞,男,1994.07,山西晋中,硕士,工业催化

    通讯作者:

    Tel: 13613519362,E-mail: gehui@sxicc.ac.cn

  • 中图分类号: TQ536.9

One-pass conversion of benzene and syngas to alkylbenzenes by ZnAlOx/ZSM-5 composite catalyst

Funds: The project was supported by the National Natural Science Foundation of China (22078351)
  • 摘要: 烷基苯是一类重要的有机化工基础原料,通过煤化工路线的苯合成气烷基化技术生产烷基苯,减轻中国对石油的过度依赖。本研究通过机械混合制备了ZnAlOx/ZSM-5复合催化剂用于苯与合成气的烷基化反应,复合催化剂两组分的最佳质量比为1∶1,复合氧化物的锌铝最佳物质的量比为2∶1,苯与合成气串联反应中间体为甲醇/二甲醚,甲醇合成催化中心是ZnO组分上的氧空位,甲醇在Al2O3上可脱水为二甲醚,甲醇/二甲醚进而在ZSM-5上与苯发生烷基化反应。由于ZnAlOx的高温甲醇或二甲醚合成特征,与ZSM-5的苯烷基化反应能够有效匹配,实现了高的反应活性和选择性。
  • FIG. 1058.  FIG. 1058.

    FIG. 1058.  FIG. 1058.

    图  1  (a):ZnAlOx和ZSM-5的XRD谱图,(b):不同质量比的ZnAlOx/ZSM-5(锌铝比为2)复合催化剂的XRD谱图,(c):不同锌铝比的ZnAlOx/ZSM-5(质量比为1)复合催化剂的XRD谱图

    Figure  1  XRD patterns of (a): ZnAlOx and ZSM-5, (b): ZnAlOx/ZSM-5 (Zn/Al = 2) with different mass ratio, (c): ZnAlOx/ZSM-5 (mass ratio is 1) with different Zn/Al ratio

    图  2  不同锌铝比的ZnAlOx的氢气程序升温还原图

    Figure  2  H2-TPR of ZnAlOx catalysts with different Zn/Al

    图  3  (a): Zn/Al = 1的ZnAlOx,(b): Zn/Al = 2的ZnAlOx,(c): Zn/Al = 3的ZnAlOx,(d): ZSM-5, (e): ZnAlOx/ZSM-5(Zn/Al = 2)复合催化剂的扫描电镜照片

    Figure  3  SEM of (a): ZnAlOx of Zn/Al = 1, (b): ZnAlOx of Zn/Al = 2, (c): ZnAlOx of Zn/Al = 3, (d): ZSM-5, (e): ZnAlOx/ZSM-5(Zn/Al = 2) composite catalyst

    图  4  反应温度对(a):液相产物选择性,(b):C7和C8总收率,(c):气相产物选择性的影响

    Figure  4  Effect of temperature on (a) the liquid products selectivities; (b) the total yield of C7 and C8; (c) the gaseous products selectivities

    4.0 MPa, GHSV = 4800 mL/(h·gcat), WHSV = 2.6 g/(h·gcat), Zn/Al = 2, mass ratio is 1∶1

    图  5  合成气空速对(a):液相产物选择性,(b):C7和C8总收率,(c):气相产物选择性的影响

    Figure  5  Effect of GHSV on (a) the liquid products selectivities; (b) the total yield of C7 and C8; (c) the gaseous products selectivities

    400 ℃, 4.0 MPa, WHSV = 2.6 g/(h·gcat), Zn/Al = 2, mass ratio is 1∶1

    图  6  两组分质量比对(a):液相产物选择性,(b):C7和C8总收率,(c):气相产物选择性的影响

    Figure  6  Effect of mass ratio on (a) the liquid products selectivities; (b) the total yield of C7 and C8; (c) the gaseous products selectivities

    450 ℃, 4.0 MPa, GHSV = 4800 mL/(h·gcat), WHSV = 2.6 g/(h·gcat), Zn/Al = 2

    图  7  Zn/Al对(a):液相产物选择性,(b):C7和C8总收率,(c):气相产物选择性的影响

    Figure  7  Effect of Zn/Al on (a) the liquid products selectivities; (b) the total yield of C7 and C8; (c) the gaseous products selectivities

    450 ℃, 4.0 MPa, GHSV = 4800 mL/(h·gcat), WHSV = 2.6 g/(h·gcat), mass ratio is 1:1

    图  8  (a):不同温度反应后的ZnAlOx/ZSM-5复合催化剂,(b):反应后不同质量比的ZnAlOx/ZSM-5复合催化剂,(c):反应后不同锌铝比的ZnAlOx/ZSM-5复合催化剂的XRD谱图

    Figure  8  XRD patterns of (a): used samples at different reaction temperatures, (b): used samples with different mass ratios, (c): used samples with different Zn/Al

    图  9  反应后ZnAlOx/ZSM-5复合催化剂的扫描电镜图

    Figure  9  SEM image of used ZnAlOx/ZSM-5 catalyst

    图  10  反应路径示意图

    Figure  10  Graph of reaction path

    表  1  ZnAlOx和ZSM-5的元素组成

    Table  1  Elemental composition of ZnAlOx and ZSM-5

    CatalystZn/Ala ratioZn/Alb ratioA/(m2·g−1)
    ZnAlOx Zn/Al=1 Zn/Al=0.69 137.25
    ZnAlOx Zn/Al=2 Zn/Al=1.47 108.65
    ZnAlOx Zn/Al=3 Zn/Al=2.34 91.89
    ZSM-5 SiO2/Al2O3 = 200 Si/Al=86 370.52
    ZSM-5: Na 0.43/%; a: raw material feed molar ratio; b: element molar ratio via ICP
    下载: 导出CSV
  • [1] 陈谦斌. 甲醇制芳烃反应的催化研究进展[J]. 工程技术,2016,(2):229.

    CHEN Qian-bin. Research progress in catalysis of methanol to aromatics[J]. Eng Technol,2016,(2):229.
    [2] KANG C, WEI Z, KANG J, HE S, YE W. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [3] 崔小明. 国内外对二甲苯产业现状及发展展望[J]. 石油化工技术与经济,2019,35(1):6−11.

    CUI Xiao-ming. The status quo and development prospects of p-xylene industry at home and abroad[J]. Technol Econ Petrochem,2019,35(1):6−11.
    [4] 汤效平, 屠庆华, 王兹尧, 王彤. 我国对二甲苯行业竞争力分析[J]. 化学工业,2016,(6):16−20. doi: 10.3969/j.issn.1673-9647.2016.06.003

    TANG Xiao-ping, TU Qing-hua, WANG Zi-yao, WANG Tong. My country's p-xylene industry competitiveness analysis[J]. Chem Ind,2016,(6):16−20. doi: 10.3969/j.issn.1673-9647.2016.06.003
    [5] ZHANG J, QIAN W, KONG C, WEI F. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst[J]. ACS Catal,2015,5(5):2982−2988. doi: 10.1021/acscatal.5b00192
    [6] 孔德金, 祁晓岚, 朱志荣, 杨为民, 谢在库. 重芳烃轻质化技术进展[J]. 化工进展,2006,(9):983−987.

    KONG De-jin, QI Xiao-lan, ZHU Zhi-rong, YANG Wei-min, XIE Zai-ku. Progress in heavy aromatics lightweight technology[J]. Chem Ind Eng Prog,2006,(9):983−987.
    [7] 胡德铭. 近期国外催化重整和芳烃生产技术的主要进展[J]. 石油化工动态,2000,(6):28−33.

    HU De-ming. Recent major progress in foreign catalytic reforming and aromatics production technology[J]. Petro News,2000,(6):28−33.
    [8] 郑明贵, 李期. 中国2020—2030年石油资源需求情景预测[J]. 地球科学进展,2020,35(3):286−296. doi: 10.11867/j.issn.1001-8166.2020.024

    ZHENG Ming-gui, LI Qi. Scenario prediction of China's oil resource demand from 2020 to 2030[J]. Earth Sci Prog,2020,35(3):286−296. doi: 10.11867/j.issn.1001-8166.2020.024
    [9] GOURSAUD S, MOMBRUN M, CHEYRON D. COVID-19 necrotising pneumonia and extracorporeal membrane oxygenation: a challenge for anticoagulation[J]. ERJ Open Res,2020,6(2):00182−02020.
    [10] YANG J, PAN X, FENG J, JIAN L, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun,2017,53(81):11146−11149. doi: 10.1039/C7CC04768A
    [11] XU Y, WANG J, MA G, ZHANG J, DING M. Hollow zeolite nanoparticles combined with Fe3O4@MnO2 tandem catalyst for converting syngas to aromatics-rich gasoline[J]. ACS Appl Nano Mater,2020,3(3):2857−2866. doi: 10.1021/acsanm.0c00123
    [12] PHA B, EBB C, Cl A, UVM B. Finding the active species: the conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts[J]. J Catal,2021,394:416−428. doi: 10.1016/j.jcat.2020.10.024
    [13] LIi H, DONG P, JI D, ZHAO H, LI C. Effect of the post-treatment of HZSM-5  on catalytic performance for methanol to aromatics[J]. ChemSelect,2020,5(11):3413−3419.
    [14] ITOH H. Role of acid and base sites in the side-chain alkylation of alkylbenzenes with methanol on two-ion-exchanged zeolites[J]. J Catal,1983,79(1):21−33. doi: 10.1016/0021-9517(83)90286-5
    [15] QIAN J, XIONG G, LIU J, LIU C, GUO H. A preliminary study on the role of internal and external surface of Nano-ZSM-5 Zeolite in the alkylation of benzene with methanol[J]. Ind Eng Chem Res,2019,58(21):9006−9016. doi: 10.1021/acs.iecr.9b00291
    [16] YU B, DING C, WANG J, ZHANG Y, LI X. Dual effects of zinc species on active sites in bifunctional composite catalysts Zr/H[Zn]ZSM-5 for alkylation of benzene with syngas[J]. J Phys Chem C,2019,123(31):18993−19004. doi: 10.1021/acs.jpcc.9b03990
    [17] WANG X, XU J, QI G, WANG C, QIANG W, DENG F. Alkylation of benzene with carbon monoxide over Zn/H-ZSM-5 zeolite studied using in situ solid-state NMR spectroscopy[J]. Cheml Com,2014,50(77):11382−11384. doi: 10.1039/C4CC03621B
    [18] YANG F, JIE Z, LIU X, ZHU X. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite[J]. Appl Energy,2018,226(2):2−30.
    [19] ZHAO X, ZENG F, ZHAO B, GU H. Alkylation activity of benzene with syngas over Cu-based catalysts[J]. China Pet Process Pe,2015,1:31−38.
    [20] 钟杰, 刘晓晖, 杨帆, 朱学栋. Pt/ZSM-5催化苯与合成气烷基化反应及工艺条件研究[J]. 石油炼制与化工,2016,47(5):62−66. doi: 10.3969/j.issn.1005-2399.2016.05.012

    ZHONG Jie, LIU Xiao-hui, YANG Fan, ZHU Xue-dong. Study on Pt/ZSM-5 catalyzed alkylation of benzene with syngas and process conditions[J]. Pet Ref Chem Ind,2016,47(5):62−66. doi: 10.3969/j.issn.1005-2399.2016.05.012
    [21] YANG F, FANG Y, LIU X, LIU X, ZHU X. One-step alkylation of benzene with syngas over non-noble catalysts mixed with modified HZSM-5[J]. Ind Eng Chem Res,2019,58(31):13879−13888. doi: 10.1021/acs.iecr.9b02156
    [22] NI Y M, CHEN Z Y, FU Y, LIU Y, ZHU W L, LIU Z M. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9:3457. doi: 10.1038/s41467-018-05880-4
    [23] WANG Y, WEI Z, KANG J, KANG C, HE S, SHI J, CHENG Z, ZHANG Q, CHEN J, PENG L. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Ange Chem Int Ed,2018,57(37):12012−12016. doi: 10.1002/anie.201807113
    [24] LAW M, GREENE L, RADENOVIC A, KUYKENDA T, YANG P. ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells[J]. J Phy Chem B,2006,110(45):22652−22663. doi: 10.1021/jp0648644
    [25] TAYLOR H, MELTING. Relations in the system MgO-Al2O3-SiO2 at 15 Kb[J]. Geol Soc Am bull,1973,84(4):1335. doi: 10.1130/0016-7606(1973)84<1335:MRITSM>2.0.CO;2
    [26] SHISHIDO T, YAMAMOTO Y, MORIOKA H, TAKAKI K. TAKEHIRA K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Appl Catal A: Gen,2004,263(2):249−253. doi: 10.1016/j.apcata.2003.12.018
    [27] CHOI Y, STENGER H. Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst[J]. Appl Catal B: Environ,2002,38(4):259−269. doi: 10.1016/S0926-3373(02)00054-1
    [28] TENGFEI H, HONG X, JIANCHAO L, LIGONG Z, XUEKUAN L, JINGXIANG D, HUI G. One-pass conversion of benzene and syngas to alkylbenzenes by Cu-ZnO-Al2O3 and ZSM-5 relay[J]. Catal Lett,2021,. doi: 10.1007/s10562-021-03617-5
    [29] 高碧泽, 张侃, 刘平. CuO/ZnO/Al2O3和ZSM-5双功能复合催化剂在苯与合成气烷基化制甲苯中的研究[J]. 天然气化工,2020,45(1):22−25, 44.

    GAO Bi-ze, ZHANG Kan, LIU Ping. Study on CuO/ZnO/Al2O3 and ZSM-5 dual-functional composite catalysts in the alkylation of benzene with syngas to toluene[J]. Nat Gas Chem Ind,2020,45(1):22−25, 44.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  101
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-05-30
  • 网络出版日期:  2021-06-29
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回