留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴催化α-己烯氢甲酰化反应区域选择性研究

何晓飞 郭靖 夏洪强 赵天生

何晓飞, 郭靖, 夏洪强, 赵天生. 钴催化α-己烯氢甲酰化反应区域选择性研究[J]. 燃料化学学报(中英文), 2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7
引用本文: 何晓飞, 郭靖, 夏洪强, 赵天生. 钴催化α-己烯氢甲酰化反应区域选择性研究[J]. 燃料化学学报(中英文), 2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7
HE Xiao-fei, GUO Jing, XIA Hong-qiang, ZHAO Tian-sheng. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7
Citation: HE Xiao-fei, GUO Jing, XIA Hong-qiang, ZHAO Tian-sheng. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 72-79. doi: 10.1016/S1872-5813(21)60131-7

钴催化α-己烯氢甲酰化反应区域选择性研究

doi: 10.1016/S1872-5813(21)60131-7
基金项目: 宁夏重点研发计划东西部合作项目(2017BY063)资助
详细信息
    通讯作者:

    E-mail:zhaots@nxu.edu.cn

  • 中图分类号: O643.3

Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene

Funds: The project was supported by the East-West Cooperation Project, Key R & D Plan of Ningxia (2017BY063)
  • 摘要: 采用密度泛函理论方法,研究了膦配体(L)配位催化活性中间体HCo(CO)2L的电子效应和位阻效应,对α-己烯氢甲酰化反应区域选择的影响。膦配体具有强吸电子能力,可提高HCo(CO)2L的稳定性;同时PPh3配体具有大的空间位阻,抑制了α-己烯吸附配位至HCo(CO)2L、以及C=C双键与Co–H键以支链反应路径加成。形成支链烷基Co中间体过渡态反应能垒(B-TS1)与形成直链烷基Co中间体过渡态(L-TS1)的反应能垒差(ΔΔE)为2.73 kcal/mol,表明前者发生相对困难,有利于按直链路经反应。膦配体的电子效应和位阻效应共同决定α-己烯C=C双键与Co–H键加成反应方式,且有利于直链反应路径加成,产物以直链醛为主。
  • FIG. 1239.  FIG. 1239.

    FIG. 1239.  FIG. 1239.

    图  1  HCo(CO)4催化烯烃氢甲酰化反应机理

    Figure  1  Mechanism for HCo(CO)4 catalyzed hydroformylation

    图  2  Co2(CO)8构型

    Figure  2  Configurations of Co2(CO)8

    图  3  α-己烯嵌入Co−H键形成烷基活化中间体

    Figure  3  Intercalation of α-hexene into Co − H to alkyl intermediates

    图  4  过渡态L-TS1(左)与B-TS1(右)几何构型

    Figure  4  Geometry of transition states L-TS1 (left) and B-TS1 (right)

    图  5  不同配体配位活性中间体立体图

    Figure  5  Graphic models for active intermediates with different ligands

    图  6  氢甲酰化形成支链醛产物路径示意图

    Figure  6  Pathway for branched aldehyde in hydroformylation

    图  7  HCo(CO)2PPh3催化α-己烯氢甲酰化反应势能示意图

    Figure  7  Potential energy for HCo(CO)2PPh3 catalyzed hydroformylation

    表  1  膦配体不同垂直配位构型及相对自由能

    Table  1  Coordination configurations of phosphine ligands and free energies

    EntryINT1INT1aΔG*/(kcal·mol−1)
    10.74
    20.87
    30.83
    40.90
    50.49
    60.50
    *:ΔG = G(INT1a)−G(INT1)
    下载: 导出CSV

    表  2  α-己烯配位反应的自由能

    Table  2  Free energy of coordination of α-hexene

    EntryLΔGr/(kcal·mol−1)
    1CO−3.82
    2PH3−5.10
    3PF3−9.90
    4PMe3−3.30
    5PPh3−3.26
    6PBu3−2.77
    下载: 导出CSV

    表  3  HCo(CO)2L构象转化相对焓和自由能

    Table  3  Enthalpy and free energy of conformational transformation of HCO(CO)2L

    EntryEquatorial
    (e)
    Axial
    (a)
    ΔH*/
    (kcal·mol−1)
    ΔG*/
    (kcal·mol−1)
    100
    21.970.41
    31.701.05
    42.721.76
    51.461.14
    61.781.47
    *:ΔG = G(a−G(e),ΔH = H(a)−H(e)
    下载: 导出CSV

    表  4  直链过渡态L-TS1和支链过渡态B-TS1结构参数

    Table  4  Structural parameters of L-TS1 and B-TS1

    ParameterL-TS1(B-TS1)
    COPH3PF3PMe3PBu3PPh3
    R(Cα–Cβ) 1.405(1.400) 1.401(1.402) 1.403(1.402) 1.407(1.406) 1.402(1.406) 1.399(1.400)
    R(Co–Cβ) 2.291(2.162) 2.193(2.137) 2.214(2.135) 2.187(2.117) 2.199(2.219) 2.214(2.155)
    R(Co–Cα) 2.163(2.187) 2.106(2.154) 2.108(2.182) 2.095(2.159) 2.110(2.243) 2.117(2.164)
    R(Co–H) 1.544(1.516) 1.516(1.515) 1.514(1.518) 1.524(1.524) 1.512(1.555) 1.513(1.512)
    R(Co–P) 2.234(2.554) 2.098(2.088) 2.220(2.222) 2.213(2.223) 2.210(2.243)
    R(Co–(CO)ax) 1.770(1.774) 1.765(1.765) 1.768(1.765) 1.751(1.749) 1.748(1.749) 1.754(1.754)
    ∠(Cα–Co–Cβ) 36.6(37.6) 38.0(38.1) 37.8(37.9) 38.3(38.4) 37.9(36.7) 37.6(37.8)
    ν* 662i(633i) 502i(557i) 553i(595i) 620i(657i) 545i(716i) 469i(572i)
    Bond Length: Å; Bond angle: ν*; Negative eigenvalue of Hessian matrix: cm−1
    下载: 导出CSV

    表  5  α-己烯嵌入Co−H键过程自由能

    Table  5  Free energy of α-hexene intercalation into Co−H

    EntryLΔG/(kcal·mol−1)
    L-TS1B-TS1ΔΔE*L-INT2B-INT2L-INT3B-INT3
    1 CO 6.54 6.68 0.14 −7.14 −7.19
    2 PH3 6.08 6.59 0.51 −7.15 −7.07 −7.93 −8.97
    3 PF3 5.71 5.07 −0.64 −12.23 −13.25 −9.92 −11.25
    4 PMe3 8.17 9.37 1.20 −3.21 −10.74 −4.68 −8.04
    5 PPh3 5.75 8.48 2.73 −4.71 −4.62 −10.20 −9.85
    6 PBu3 7.43 9.92 2.49 −4.20 −1.27 −8.43 −2.95
    *:ΔΔE = ΔG (B-TS1)−ΔG(L-TS1)
    下载: 导出CSV
  • [1] FRANKE R, SELENT D, BÖRNER A. Applied hydroformylation[J]. Chem Rev,2012,112(11):5675−5732. doi: 10.1021/cr3001803
    [2] ROELEN O. Production of oxygenated carbon compounds. US, 2327066[P]. 1943.
    [3] HEBRARD F, KALCK P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle[J]. Chem Rev,2009,109(9):4272−4282. doi: 10.1021/cr8002533
    [4] SZLAPA E N, HARVEY J N. Computational modelling of selectivity in cobalt-catalyzed propene hydroformylation[J]. Chem Eur J,2018,24(64):17096−17104. doi: 10.1002/chem.201803490
    [5] LIU Y, LI Z H, WANG B, ZHANG Y. A fine dispersed cobalt catalyst with macro-pore for hydroformylation of 1-hexene[J]. Catal Lett,2016,11(146):2252−2260.
    [6] HOOD D M, JOHNSON R A, CARPENTER A E, YOUNKER J M, VINYARD D J, STANLEY G G. Highly active cationic cobalt(II) hydroformylation catalysts[J]. Science,2020,367(6477):542−548. doi: 10.1126/science.aaw7742
    [7] HECK R F, BRESLOE D S. The reaction of cobalt hydrotetracarbonyl with olefins[J]. J Am Chem Soc,1961,83:4023−4027. doi: 10.1021/ja01480a017
    [8] LI P, SHEN C R, MIN J, MEI J Y, ZHENG H, HE L TIAN X X. Computational investigation of the ligand effect on the chemo/regioselectivity and reactivity of cobalt-catalysed hydroformylation[J]. Catal Sci Technol,2020,10(9):2994−3007. doi: 10.1039/C9CY02562F
    [9] VARELA J A, VÁZQUEZ S A, MARTÍNEZ-NÚÑEZ E. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis[J]. Chem Sci,2017,8(5):3843−3851.
    [10] RUSH L E, PRINGLE P G, HARVEY J N. Computational kinetics of cobalt-catalyzed alkene hydroformylation[J]. Angew Chem Int Ed,2014,53(33):8672−8676. doi: 10.1002/anie.201402115
    [11] FENG J H, GARLAND M. Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis[J]. Organometallics,1999,18(3):417−427. doi: 10.1021/om980514v
    [12] 雷鸣, 冯文林, 徐振峰. 羰基钴催化氢甲酰化反应的理论研究[J]. 物理化学学报,2000,16(6):522−526. doi: 10.3866/PKU.WHXB20000609

    LEI Ming, FENG Wen-lin, XU Zhen-feng. Theoretical study on the mechanisms of some elementary reactions catalyzed by modified carbonyl cobalt[J]. Acta Phys-Chim Sin,2000,16(6):522−526. doi: 10.3866/PKU.WHXB20000609
    [13] HUO C F, LI Y W, BELLER M, JIAO H J. HCo(CO)3-catalyzed propene hydroformylation. Insight into detailed mechanism[J]. Organometallics,2003,22(23):4665−4677. doi: 10.1021/om0304863
    [14] BERNALES V, FROESE R D. Rhodium catalyzed hydroformylation of olefins[J]. J Comput Chem,2019,40(2):342−348. doi: 10.1002/jcc.25605
    [15] LEI M, FENG W L, XU Z F. Ab initio MO study of reactions mechanism for carbonyl migration of Co complex[J]. Chin Sci Bull,2000,45(13):1176−1178. doi: 10.1007/BF02886073
    [16] KUMAR M, CHAUDHARI R V, SUBRAMANIAM B, JACKSON T A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: Density functional calculations illuminate the role of long-range noncovalent interactions[J]. Organometallics,2014,33(16):4183−4191. doi: 10.1021/om500196g
    [17] PATEL P, WILSON A K. Computational chemistry considerations in catalysis: Regioselectivity and metal-ligand dissociation[J]. Catal Today,2020,358:422−429. doi: 10.1016/j.cattod.2020.07.057
    [18] DIAS R P, PRATES M S L, DE ALMEIDA W B, ROCHA W R. DFT study of the ligand effects on the regioselectivity of the insertion reaction of olefins in the complexes [HRh(CO)2(PR3)(L)] (R = H, F, Et, Ph, OEt, OPh, and L = propene, styrene)[J]. Int J Quantum Chem,2011,111(7/8):1280−1292. doi: 10.1002/qua.22590
    [19] BECKE A D. Density ‐ functional thermochemistry. III. The role of exact exchange[J]. J Chern Phys,1993,98(7):5648−5652. doi: 10.1063/1.464913
    [20] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem,2011,32(7):1456−1465. doi: 10.1002/jcc.21759
    [21] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian16 Rev. B. 01[M] Wallingford, CT, 2016.
    [22] AULLóN G, ALVAREZ S. The [M2(CO)8] complexes of the cobalt group[J]. Eur J Inorg Chem,2001,12:3031−3038.
    [23] GUO J D, PHAM H D, WU Y B, ZHANG D J, WANG X T. Mechanism of cobalt-catalyzed direct aminocarbonylation of unactivated alkyl electrophiles: Outer-sphere amine substitution to form amide bond[J]. ACS Catal,2020,10(2):1520−1527. doi: 10.1021/acscatal.9b04736
    [24] 姜淼, 杜虹, 王国庆, 严丽, 丁云杰. Co-PPh3@POPs多相催化剂氢甲酰化反应研究[J]. 煤炭学报,2020,45(4):1250−1258.

    JIANG Miao, DU Hong, WANG Guo-qing, YAN Li, DING Yun-jie. Co-PPh3@POPs heterogeneous catalysts for hydroformylation of olefins[J]. J China Coal Soc,2020,45(4):1250−1258.
    [25] GRIMA J P, CHOPLIN F, KAUFMANN G. Theoretical study of the hydroformyltaion reaction mechanism[J]. J Organomet Chem,1977,129:221−237. doi: 10.1016/S0022-328X(00)92495-1
    [26] BIRBECK J M, HAYNES A, ADAMS H, DAMOERNSE L, OTTO S. Ligand effects on reactivity of cobalt acyl complexes[J]. ACS Catal,2012,2(12):2512−2523. doi: 10.1021/cs300589n
    [27] HUO C F, ZENG T, LI Y W, BELLER M, JIAO H J. Switching end-on into side-on C≡N coordination: A computational approach[J]. Organometallics,2005,24(24):6037−6042. doi: 10.1021/om0505054
    [28] FALIVENE L, CREDENDINO R, POATER A, PETTA A, SERRA L, OLIVA R, SCARANO V, CAVALLO L. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps[J]. Organometallics,2016,35(13):2286−2293. doi: 10.1021/acs.organomet.6b00371
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  81
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-06-20
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回