留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多种制革废物共热解动力学及热解产物分布

张洁涵 康国俊 杨行 刘周恩 余剑 高士秋

张洁涵, 康国俊, 杨行, 刘周恩, 余剑, 高士秋. 多种制革废物共热解动力学及热解产物分布[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60133-0
引用本文: 张洁涵, 康国俊, 杨行, 刘周恩, 余剑, 高士秋. 多种制革废物共热解动力学及热解产物分布[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60133-0
ZHANG Jie-han, KANG Guo-jun, YANG Hang, LIU Zhou-en, YU Jian, GAO Shi-qiu. Co-pyrolysis kinetics and pyrolysis product distribution of various tannery wastes[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60133-0
Citation: ZHANG Jie-han, KANG Guo-jun, YANG Hang, LIU Zhou-en, YU Jian, GAO Shi-qiu. Co-pyrolysis kinetics and pyrolysis product distribution of various tannery wastes[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60133-0

多种制革废物共热解动力学及热解产物分布

doi: 10.1016/S1872-5813(21)60133-0
基金项目: 国家重点研发计划(2019YFE0197200)和广西创新驱动发展专项基金(GXMPST AA18118013)资助
详细信息
    作者简介:

    张洁涵:zjh9341@163.com

    通讯作者:

    E-mail: gjkang@cumt.edu.cn

    yujian@ipe.ac.cn

  • 中图分类号: X794

Co-pyrolysis kinetics and pyrolysis product distribution of various tannery wastes

Funds: The project was supported by the National Key R & D Program of China (2019YFE0197200), the Guangxi Major Projects of Science and Technology (GXMPSTAA 18118013)
  • 摘要: 以制革污泥与磨革粉、蓝湿皮的混合物为实验原料,通过非等温分布活化能模型(DAEM)获得了热解动力学参数,并在固定床热解反应器中考察了粒径和温度对多种制革废物共热解产物分布的影响,为多种制革废物的综合热处理提供一个新途径。结果表明,在转化率为0.1–0.8的条件下,制革废物的热解活化能随转化率的升高先减小后增大。物料粒径增大时,焦油收率下降,热解气和半焦的收率升高;随热解温度的升高,焦油收率先增加后减小,在600 ℃时达到最大值17%,对应半焦收率的下降和热解气收率的上升。当热解温度为600 ℃,物料粒径为1.6–2.5 mm时,热解半焦的比表面积和焦油中轻质组分含量较高,多种制革废物的共热解有利于制革废物的清洁化处理。
  • 图  1  固定床热解装置流程示意图

    1: mass flow controller; 2: temperature controller; 3: electric furnace; 4: fixed bed reactor; 5: condenser; 6: ice water; 7: actone trap; 8: wet gas meter; 9: NaHCO3 trap; 10: dry silica gel bottle; 11: gas bag; 12: micro GC

    Figure  1  Schematic diagram of fixed bed pyrolysis equipment

    图  2  600 ℃时不同样品的热解产物分布和焦油中轻质组分含量

    Figure  2  Distribution of pyrolysis products and the light fraction in tar of different samples at 600 ℃

    (a): product yield; (b): light tar fraction

    图  3  M2L3W5的热解特性和动力学分析

    Figure  3  Pyrolysis characteristics and kinetics of M2L3W5

    (a) and (b): TG and DTG curves of M2L3W5; (c): linear relations of ln(β/T2) VS 1/T at different conversion rates; (d): variations of activation energy

    图  4  600 ℃时不同粒径混合物的热解

    Figure  4  Results of MLW pyrolysis at 600 ℃ of different particle size

    (a): product yield; (b): gas components yield; (c): tar fraction; (d): tar yield and light tar fraction

    图  5  物料热解半焦的红外光谱谱图

    Figure  5  FT-IR spectra of char of samples

    (a): different particle size; (b): different temperature

    图  6  粒径1.6–2.5 mm混合物在不同温度的热解

    Figure  6  (a): product yield; (b): gas components yield; (c): tar fraction; (d): tar yield and light tar fraction

    表  1  原料的工业分析与元素分析

    Table  1  Proximate and ultimate analyses of samples

    SampleProximate analysis wd/%Ultimate analysis wdaf/%QHHV/(MJ·kg−1)
    AVFCCHNSOa
    MGF9.1774.7516.0857.4214.254.752.9520.6315.46
    LSP14.3756.9528.6865.3014.516.632.8910.6716.06
    WN46.7551.631.6239.604.402.748.3844.888.49
    a: by difference, d: dry basis, daf: dry and ash free basis
    下载: 导出CSV

    表  2  三种原料的灰分组成(XRF分析)

    Table  2  Composition of ashes of three samples (XRF analysis)

    SampleComposition w/%
    CaOFe2O3SO3Cr2O3Al2O3TiO2SiO2MgOP2O5Na2Oothers
    MGF0.890.9210.0952.893.730.6322.810.293.473.990.29
    LSP0.681.0610.7778.630.270.180.950.712.334.280.14
    WN42.2918.9917.234.684.124.123.961.751.081.060.72
    下载: 导出CSV

    表  3  热解产物收率的重复性实验

    Table  3  Repeatability of the pyrolysis product yield

    Pyrolysis productTest 1Test 2Test 3AverageAbsolute errorRelative error
    Char49.0%47.7%47.3%48.0%0.7%1.4%
    Tar17.3%17.3%17.0%17.2%0.1%0.8%
    Gas7.1%7.2%7.3%7.2%0.1%0.9%
    Water26.7%27.8%28.4%27.6%0.5%1.8%
    下载: 导出CSV

    表  4  热解半焦的工业分析和元素分析

    Table  4  Proximate and ultimate analyses of chars

    SampleProximate analysis wd/%Ultimate analysis wdaf/%
    AVFCCHNSOa
    0.8–1.6 mm60.5118.2621.2336.971.585.785.5750.1
    1.6–2.5 mm56.5921.6121.8033.751.445.245.1054.47
    2.5–3.2 mm53.6224.1922.1931.521.324.954.2757.94
    3.2–4.0 mm51.1326.2322.6429.941.254.654.4759.69
    400 ℃45.1031.4623.4415.593.3510.202.6568.21
    500 ℃50.1227.5622.3222.241.185.203.2768.11
    600 ℃56.5921.6121.8025.771.093.973.8665.31
    700 ℃60.5317.8221.6545.620.532.175.3246.36
    800 ℃63.9214.7921.2956.710.502.005.8434.95
    a: by difference, d: dry basis, daf: dry and ash free basis
    下载: 导出CSV

    表  5  热解半焦的物理性质

    Table  5  Physical properties of char from pyrolysis

    SampleSBET/(m2·g−1)vP/(cm3·g−1)dave/nm
    0.8–1.6 mm29.730.1013.33
    1.6–2.5 mm62.110.126.73
    2.5–3.2 mm63.010.1010.79
    3.2–4.0 mm50.170.1110.61
    400 ℃20.690.0713.55
    500 ℃60.340.1110.87
    600 ℃62.110.126.73
    700 ℃65.240.159.88
    800 ℃18.590.0213.03
    下载: 导出CSV
  • [1] LI Y, GUO R, LU W, ZHU D. Research progress on resource utilization of leather solid waste[J]. J of Leather Sci Eng,2019,1(1):1−17. doi: 10.1186/s42825-019-0004-x
    [2] ZENG J, GOU M, TANG Y, LI G, SUN Z, KIDA K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community[J]. Bioresour Technol,2016,218:859−866. doi: 10.1016/j.biortech.2016.07.051
    [3] 李晓星, 陈杰, 贾继章. 制革污泥处理及资源化利用研究进展[J]. 西部皮革,2015,37(18):39−42. doi: 10.3969/j.issn.1671-1602.2015.18.013

    LI Xiao-xing, CHEN Jie, JIA Ji-zhang. Research progress in treatment and resource utilization of tannery sludge[J]. West Leather,2015,37(18):39−42. doi: 10.3969/j.issn.1671-1602.2015.18.013
    [4] MISHRA D, RHEE Y H. Microbial leaching of metals from solid industrial wastes[J]. J Microbiol,2014,52(1):1−7. doi: 10.1007/s12275-014-3532-3
    [5] 葛淑华, 王全杰, 刁屾, 王雪, 袁艳, 栾俊. 皮革固体废弃物研究进展及应用[J]. 皮革与化工,2019,36(2):37−42. doi: 10.3969/j.issn.1674-0939.2019.02.007

    GE Shu-hua, WANG Quan-jie, DIAO Shen, WANG Xue, YUAN Yan, LUAN Jun. Research progress and application of solid leather waste[J]. Leather Chem,2019,36(2):37−42. doi: 10.3969/j.issn.1674-0939.2019.02.007
    [6] YANG H, LIU B, CHEN Y, CHEN W, YANG Q, CHEN H. Application of biomass pyrolytic polygeneration technology using retort reactors[J]. Bioresour Technol,2016,200:64−71. doi: 10.1016/j.biortech.2015.09.107
    [7] DEVI P, SAROHA A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresour Technol,2014,162:308−315. doi: 10.1016/j.biortech.2014.03.093
    [8] CABALLERO J A, FONT R, ESPERANZA M M. Kinetics of the thermal decomposition of tannery waste[J]. J Anal Appl Pyrolysis,1998,47(2):165−181. doi: 10.1016/S0165-2370(98)00081-3
    [9] WANG C, BI H, LIN Q, JIANG X, JIANG C. Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics[J]. Renewable Energy,2020,160:1048−1066. doi: 10.1016/j.renene.2020.07.046
    [10] XU X, ZHAO B, SUN M, CHEN X, ZHANG M, LI H, XU S. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis[J]. Waste Manag,2017,62:91−100. doi: 10.1016/j.wasman.2017.02.012
    [11] FRIŠTÁK V, PIPÍŠKA M, SOJA G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer[J]. J Clean Prod,2018,172:1772−1778. doi: 10.1016/j.jclepro.2017.12.015
    [12] 印安冬, 邓文义, 马璟宸, 苏雅欣. 污泥热解炭脱除NO特性[J]. 化工学报,2018,69(6):2655−2663.

    YIN An-dong, DENG Wen-yi, MA Jing-chen, SU Ya-xin. Properties on NO removal over pyrolyzed sludge carbon[J]. CIESC J,2018,69(6):2655−2663.
    [13] SYED-HASSAN S S A, WANG Y, HU S, SU S, XIANG J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations[J]. Renewable Sustainable Energ Rev,2017,80:888−913. doi: 10.1016/j.rser.2017.05.262
    [14] PUCHANA-ROSERO M J, ADEBAYO M A, LIMA E C, MACHADO F M, THUE P S, VAGHETTI J C, UMPIERRES C S, GUTTERRES M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes[J]. Colloids Surf A: Physicochem Eng Aspects,2016,504:105−115.
    [15] 钱晓峰, 王肖杭, 陆鹏, 王东科, 何石鱼, 黄群星. 污泥、皮革和煤的协同热处置[J]. 环境工程学报,2017,11(12):6437−6442. doi: 10.12030/j.cjee.201702037

    QIAN Xiao-feng, WANG Xiao-hang, LU Peng, WANG Dong-ke, HE Shi-yu, HUANG Qun-xing. Co-thermal-disposal of sewage sludge, leather scraps and coal[J]. J Environ Sci (China),2017,11(12):6437−6442. doi: 10.12030/j.cjee.201702037
    [16] 王俊丽, 赵强, 郝晓刚, 黄伟, 赵建国. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报,2021,49(1):37−46.

    WANG Jun-li, ZHAO Qiang, HAO Xiao-gang, HUANG Wei, ZHAO Jian-guo. Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products[J]. J Fuel Chem Technol,2021,49(1):37−46.
    [17] CHEN D, LI Y, CEN K, LUO M, LI H, LU B. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature[J]. Bioresour Technol,2016,218:780−788. doi: 10.1016/j.biortech.2016.07.049
    [18] 王兴栋, 张斌, 余广炜, 童科宪, 林景江, 汪印. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报,2016,67(11):4808−4816.

    WANG Xing-dong, ZHANG Bin, YU Guang-wei, TONG Ke-xian, LIN Jing-jiang, WANAG Yin. Preparation of biochar with different particle sized sewage sludge and its characteristics[J]. CIESC J,2016,67(11):4808−4816.
    [19] MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels,1998,12(5):864. doi: 10.1021/ef970212q
    [20] FU Y, GUO Y, ZHANG K. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels,2016,30(3):2428−2433. doi: 10.1021/acs.energyfuels.5b02720
    [21] LU Q, ZHANG N, YANG Q, LI Y, CAO Q, LIU S, LING J, XIE X, XU Y, WANG L, YUAN S. Influence of calcium promoter on catalytic pyrolysis characteristics of iron-loaded brown coal in a fixed bed reactor[J]. J Energy Inst,2020,93(2):695−710. doi: 10.1016/j.joei.2019.05.011
    [22] KLUSKA J, OCHNIO M, KARDAS D, HEDA L. The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste[J]. Waste Manag,2019,88:248−256. doi: 10.1016/j.wasman.2019.03.046
    [23] WANG D, CHEN Z, LI C, WANG D, LI Y, YANG H, LIU Z, YU J, GAO S. High-quality tar production from coal in an integrated reactor: Rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed[J]. Fuel,2021,285:119156. doi: 10.1016/j.fuel.2020.119156
    [24] 畅志兵, 初茉, 张超, 王文涓, 曲洋. 颗粒粒径对油页岩热解产油率的影响[J]. 燃料化学学报,2015,43(6):663−668. doi: 10.3969/j.issn.0253-2409.2015.06.004

    CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. J Fuel Chem Technol,2015,43(6):663−668. doi: 10.3969/j.issn.0253-2409.2015.06.004
    [25] MOŠKO J, POHOŘELÝ M, SKOBLIA S, BEŇO Z, JEREMIÁŠ M. Detailed analysis of sewage sludge pyrolysis gas: Effect of pyrolysis temperature[J]. Energies,2020,13(16):4087. doi: 10.3390/en13164087
    [26] SHEN Y. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification[J]. Renewable Sustainable Energy Rev,2015,43:281−295. doi: 10.1016/j.rser.2014.11.061
    [27] HE X, LIU Z, NIU W, YANG L, ZHOU T, QIN D, NIU Z, YUAN Q. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues[J]. Energy,2018,143:746−756. doi: 10.1016/j.energy.2017.11.062
    [28] XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy,2013,50:136−141. doi: 10.1016/j.renene.2012.06.028
    [29] SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review[J]. Fuel,2015,140:102−115. doi: 10.1016/j.fuel.2014.09.034
    [30] KARACA C, SOZEN S, ORHON D, OKUTAN H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery[J]. Waste Manag,2018,78:217−226. doi: 10.1016/j.wasman.2018.05.034
    [31] FONTS I, GEA G, AZUARA M, ÁBREGO J, ARAUZO J. Sewage sludge pyrolysis for liquid production: A review[J]. Renewable Sustainable Energ Rev,2012,16(5):2781−2805. doi: 10.1016/j.rser.2012.02.070
    [32] CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresour Technol,2010,101(14):5222−5228. doi: 10.1016/j.biortech.2010.02.052
    [33] TÔRRES FILHO A, LANGE L C, DE MELO G C B, PRAES G E. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process[J]. Waste Manage,2016,48:448−456. doi: 10.1016/j.wasman.2015.11.046
    [34] CHUN Y N, JI D W, YOSHIKAWA K. Pyrolysis and gasification characterization of sewage sludge for high quality gas and char production[J]. J Mech Sci Technol,2013,27(1):263−272. doi: 10.1007/s12206-012-1202-0
    [35] GEETHAKARTHI A, PHANIKUMAR B R. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye[J]. Environ Sci Pollut Res Int,2012,19(3):656−665. doi: 10.1007/s11356-011-0608-z
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-06-23
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回