留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiO支撑In2O3(110)表面CO2加氢合成甲醇的理论计算研究

张科文 陈毅飞 胡廷平 吕喜梅

张科文, 陈毅飞, 胡廷平, 吕喜梅. NiO支撑In2O3(110)表面CO2加氢合成甲醇的理论计算研究[J]. 燃料化学学报(中英文), 2021, 49(11): 1684-1692. doi: 10.1016/S1872-5813(21)60139-1
引用本文: 张科文, 陈毅飞, 胡廷平, 吕喜梅. NiO支撑In2O3(110)表面CO2加氢合成甲醇的理论计算研究[J]. 燃料化学学报(中英文), 2021, 49(11): 1684-1692. doi: 10.1016/S1872-5813(21)60139-1
ZHANG Ke-wen, CHEN Yi-fei, HU Ting-ping, LÜ Xi-mei. Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1684-1692. doi: 10.1016/S1872-5813(21)60139-1
Citation: ZHANG Ke-wen, CHEN Yi-fei, HU Ting-ping, LÜ Xi-mei. Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1684-1692. doi: 10.1016/S1872-5813(21)60139-1

NiO支撑In2O3(110)表面CO2加氢合成甲醇的理论计算研究

doi: 10.1016/S1872-5813(21)60139-1
基金项目: 国家自然科学基金(21536008)资助
详细信息
    作者简介:

    张科文(1994-),男,甘肃庄浪,硕士生,邮箱:1746085505@qq.com

    通讯作者:

    Tel: 027-83943956, E-mail: tingpinghu@163.com

  • 中图分类号: TQ032

Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst

Funds: The proiect was supporteed by the National Natural Science Foundation of China (21536008)
  • 摘要: 本研究采用密度泛函理论(DFT),研究了NiO支撑对In2O3(110)缺陷表面上CO2加氢合成甲醇过程的影响,分析了两种甲醇合成路径,即HCOO路径和逆水煤气(RWGS)合成路径,计算了HCOO和RWGS路径中每个基元反应的反应能和活化能垒。结果表明,NiO支撑能够强化In2O3催化剂对CO2的吸附性能,促进甲醇通过HCOO反应路径的生成。在HCOO路径中,HCOO加氢生成H2COO是HCOO反应路径的速率控制步骤,活化能垒为1.66 eV。NiO支撑的In2O3(110)缺陷表面对CO2的加氢具有促进作用,有助于CO2沿着HCOO路径合成甲醇,从而提高CO2加氢合成甲醇的效率。
  • FIG. 1065.  FIG. 1065.

    FIG. 1065.  FIG. 1065.

    图  1  (a) NiO支撑的In2O3(110)完美表面,(b) NiO支撑的In2O3(110)缺陷表面;侧视图(上),俯视图(下);其中,红色,O原子;棕色,In原子;绿色,Ni原子

    Figure  1  (a) NiO supported In2O3(110) perfect surface; (b) NiO supported In2O3(110) defect surface;side view (upper), top view (lower); Here, the red O atom; Brown, In atom; Green, Ni atom

    图  2  在D表面上CO2加氢合成甲醇中间体的优化结构,侧视图(上),俯视图(下)

    Figure  2  Optimized structures of CO2 hydrogenation to methanol intermediates on D surface, side view (upper), top view (lower)

    图  3  D表面CO2加氢合成甲醇的各个基元反应的初始、过渡和最终状态的优化结构;侧视图(上),俯视图(下)

    Figure  3  Optimized structure of the initial, transition and final states of the elementary reaction steps of the hydrogenation of CO2 to methanol on D surface; side view (upper), top view (lower)

    图  4  D面上HCOO路径合成甲醇的势能曲线,(a) NiO支撑的In2O3(110) D表面,(b) In2O3(110) D表面

    Figure  4  Potential energy for methanol synthesis through HCOO route on D surface(a): NiO supported In2O3(110) D surface; (b): In2O3(110) D surface

    图  5  在D表面上CO加氢合成甲醇中间体的优化结构,侧视图(上),俯视图(下)

    Figure  5  Optimized structure of CO hydrogenation to methanol intermediates on D surface, side view (upper), top view (lower)

    图  6  D表面CO加氢合成甲醇的各个基元反应的初始、过渡和最终状态的优化结构;侧视图(上),俯视图(下)

    Figure  6  Optimized structure of the initial, transition and final states of the elementary reaction steps for the hydrogenation of surface CO to methanol; side view (upper), top view (lower)

    图  7  在D面上RWGS路径合成甲醇的势能曲线,(a) NiO支撑In2O3(110) D表面,(b) In2O3(110) D表面

    Figure  7  Potential energy for methanol synthesis by RWGS route on D surface(a): NiO supported In2O3(110) D surface; (b): In2O3(110) D surface

    表  1  在D表面CO2加氢合成甲醇中间体的吸附能Eads和几何参数

    Table  1  Adsorption energies and geometric parameters of the intermediates of CO2 hydrogenation to synthesize methanol on the D surface

    SpeciesSitesEads/eVBond length/Å
    CO2 D −0.85 d(In2−Oa) = 2.25, d(In2−Ob) = 2.31, d(C−Oa) = 1.30, d(C−Ob) = 1.26, d(In3−C) = 2.19
    HCOO D −2.59 d(In2−Oa) = 2.26, d(In2−Ob) = 2.32, d(C−Oa) = 1.36, d(C−Ob) = 1.26, d(In3−C) = 2.20
    H2COO D −3.88 d(In2−Oa) = 2.26, d(In2−Ob) = 2.32, d(C−Oa) = 1.30, d(C−Ob) = 1.26, d(In3−C) = 2.20
    H2CO P −2.45 d(In2−Ob) = 2.32, d(C−Ob) = 1.30, d(C−H2) = 1.26
    H3CO P −1.40 d(In2−Ob) = 2.32, d(C−Ob) = 1.26, d(C−H3) = 1.30
    H3COH P −0.85 d(In2−Ob) = 2.32, d(C−Ob) = 1.30, d(C−H4) = 1.26
    下载: 导出CSV

    表  2  D表面上CO2加氢合成甲醇的各个基元反应的反应能Er和活化能垒Ea

    Table  2  Reaction energy and activation energy barrier for the hydrogenation of CO2 to methanol on D surface

    Elementary reaction stepEr/eVEa/eV
    CO2 + H → HCOO−1.401.61
    HCOO + H → H2COO0.171.66
    H2COO + H → H3CO + Os−0.160.68
    H2CO + H → H3CO−0.641.33
    H3CO + H→ H3COH0.300.71
    下载: 导出CSV

    表  3  D表面CO加氢合成甲醇中间体的吸附能Eads和几何参数

    Table  3  Adsorption energy and geometric parameters of methanol intermediates synthesized by hydrogenation of CO on D surface

    SpeciesEads/eVBond length/Å
    CO−0.77d(In2−C) = 2.44, d(C−O) = 1.19,
    d(In3−C) = 2.42
    HCO−1.48d(In3−C) = 2.26, d(C−O) = 1.20,
    d(C−H) = 1.17
    H2CO−1.14d(In3−C) = 2.27, d(In2−O) = 2.08,
    d(C−O) = 1.37, d(C−H2) = 1.11
    H3CO−2.23d(In3−O) = 2.29, d(In2−O) = 2.23,
    d(C−O) = 1.47, d(C−H3) = 1.10
    H3COH−0.73d(In2−O) = 2.31, d(C−O) = 1.47,
    d(O−H4) = 1.20
    下载: 导出CSV

    表  4  D表面CO加氢合成甲醇的各个基元反应的反应能Er和活化能垒Eb

    Table  4  Reaction energy and activation energy barrier for the hydrogenation of CO on D surface to methanol

    Elementary reaction stepEr/eVEa/eV
    CO2 → CO+O1.01.42
    CO + H → HCO−0.980.19
    HCO + H → H2CO−0.951.84
    H2CO + H → H3CO−0.970.11
    H3CO + H → H3COH−0.550.36
    下载: 导出CSV

    表  5  CO2在In2O3(110)D表面,NiO支撑In2O3(110)D表面吸附的Mulliken电荷布局

    Table  5  Mulliken atomic charge populations for CO2 adsorption on the D surface, NiO supported In2O3(110)D surface

    Atom
    Charge/e
    CO2In2O3(110)NiO/In2O3(110)
    C0.4820.4830.490
    O1−0.241−0.443−0.446
    O2−0.241−0.494−0.501
    下载: 导出CSV
  • [1] 叶静云. 二氧化碳加氢In2O3系催化剂理论与实验研究[D]. 天津: 天津大学, 2014.

    YE Jing-yun. Theoretical and experimental studies of CO2 hydrogenation on the In2O3 based catalyst[D]. Tianjin: Tianjin University, 2014.
    [2] JADHAV S G, VAIDYA P D, BHANAGE B M, JOSHI J B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies[J]. Chem Eng Res Des,2014,92(11):2557−2567. doi: 10.1016/j.cherd.2014.03.005
    [3] MARTINEZ-SUAREZ L, SIEMER N, FRENZEL J, MARX D. Reaction network of methanol synthesis over Cu/ZnO nanocatalysts[J]. ACS Catal,2015,5(7):4201−4218. doi: 10.1021/acscatal.5b00442
    [4] YANG Y, EVANS J, RODRIGUEZ J A, WHITE M G, PING L. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001)[J]. Phys Chem Chem Phys,2010,12(33):9909−9917. doi: 10.1039/c001484b
    [5] ZHAO Y F, YONG Y, MIMS C, PEDEN C, LI J, MEI D H. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. J Catal,2011,281(2):199−211. doi: 10.1016/j.jcat.2011.04.012
    [6] DUBOIS J L, SAYAMA K, ARAKAWA H. CO2 hydrogenation over carbide catalysts[J]. Chem Lett,1992,21(1):5−8.
    [7] SOLYMOSI F, OSZKO A, BANSAGI T, TOLMACSOV P. Adsorption and reaction of CO2 on Mo2C catalyst[J]. J Phys Chem B,2002,106(37):9613−9618. doi: 10.1021/jp0203696
    [8] POROSOFF M D, YANG X, BOSCOBOINIK J A, CHEN J G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO[J]. Angew Chem Int Ed,2014,53(26):6705−6709. doi: 10.1002/anie.201404109
    [9] LIN S, YE X X. First-principle insights into the catalytic role of indium oxide in methanol steam reforming[J]. Chin J Catal,2013,34(10):1855−1860. doi: 10.1016/S1872-2067(12)60662-7
    [10] 韩睿, 唐家鹏, 何平笙, 郭新宇. CO2制备甲醇催化剂研究进展[J]. 工业催化,2015,23(9):677−681. doi: 10.3969/j.issn.1008-1143.2015.09.004

    HAN Rui, TANG Jia-peng, HE Ping-sheng, GUO Xin-yu. Recent advances in the catalysts for preparation of methanol from CO2[J]. Ind Catal,2015,23(9):677−681. doi: 10.3969/j.issn.1008-1143.2015.09.004
    [11] OLIVER, MARTIN, ANTONIO, J, MARTIN, CECILIA, MONDELLI. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55(21):6261−6265. doi: 10.1002/anie.201600943
    [12] LIU C J, SUN K H, GE Q F, WANG Z Y, RUI N. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy[J]. Appl Catal B: Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
    [13] GARCIA-TRENCO A, REGOUTZ A, WHITE E R, PAYNE D J, SHAFFER M, WILLIAMS C K. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol[J]. Appl Catal B: Environ,2018,220:9−18. doi: 10.1016/j.apcatb.2017.07.069
    [14] ZHANG, M H, DOU, M B, YU Y Z. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation[J]. Appl Surf Sci,2018,433(1):780−789.
    [15] YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. J Phys Chem C,2012,116(14):7817−7825. doi: 10.1021/jp3004773
    [16] YE J Y, LIU C J, MEI D H, GE Q F. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT Study[J]. ACS Catal,2013,3(6):1296−1306. doi: 10.1021/cs400132a
    [17] YE J Y, LIU C J, MEI D H, GE Q F. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: A combined DFT and kinetic study[J]. J Catal,2014,317:44−53. doi: 10.1016/j.jcat.2014.06.002
    [18] OTSUKA K, YASUI T, MORIKAWA A. Production of CO from CO2 by reduced indium oxide[J]. J Chem Soc,1982,78(11):3281−3286.
    [19] BIELZ T, LORENZ H, AMANN P, KLOOTZER B, PENNER S. Water-gas shift and formaldehyde reforming activity determined by defect chemistry of polycrystalline In2O3[J]. J Phys Chem C,2011,115(14):6622−6628. doi: 10.1021/jp111739m
    [20] SUN Q D, YE J Y, LIU C J, GE Q F. In2O3 as a promising catalyst for CO2 utilization: A case study with reverse water gas shift over In2O3[J]. Greenh Gases,2014,4(1):140−144. doi: 10.1002/ghg.1401
    [21] SUN K H, FAN Z G, YE J Y, YAN J M, GE Q F, LI Y N, HE W, YANG W J, LIU C J. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. J CO2 Util,2015,12:1−6. doi: 10.1016/j.jcou.2015.09.002
    [22] YE J Y, LIU C J, GE Q F. A DFT study of methanol dehydrogenation on the PdIn(110) surface[J]. Phys Chem Chem Phys,2012,14(48):16660−16667. doi: 10.1039/c2cp42183f
    [23] 赵丽丽. 二氧化锆负载镍催化剂催化顺酐选择加氢性能研究[D]. 太原: 山西大学, 2019.

    ZHAO Li-li. The study on selective hydrogenation of malefic anhydride catalyzed by ZrO2 supported nickel catalyst[D]. Taiyuan: Shanxi University, 2019.
    [24] 梁二艳, 张因, 赵丽丽, 徐亚琳, 赵永祥. 甲醇热制备四方相ZrO2及其负载镍催化剂的顺酐加氢性能[J]. 化工学报,2017,68(6):2352−2358.

    LIANG Er-yan, ZHANG Yin, ZHAO Li-li, XU Ya-lin, ZHAO Yong-xiang. Selective hydrogenation of malefic anhydride over Ni/ZrO2 catalysts with ZrO2 prepared by methanol thermal method[J]. CIESC J,2017,68(6):2352−2358.
    [25] 孟志宇, 张因, 赵丽丽, 张鸿喜, 赵永祥. 不同晶型TiO2负载镍催化剂催化顺酐液相加氢[J]. 高等学校化学学报,2015,36(9):1779−1785.

    MENG Zhi-yu, ZHANG Yin, ZHAO Li-li, ZHANG Hong-xi, ZHAO Yong-xiang. Different crystalline TiO2 supported nickel catalysts catalyzed coordinative liquid phase hydrogenation[J]. Chem J Chin Univ,2015,36(9):1779−1785.
    [26] 梁志铭, 聂小娃, 郭新闻, 宋春山. 镍掺杂对Fe催化剂上CO2加氢制烃影响的理论计算研究[J]. 分子催化,2020,34(4):293−303.

    LIANG Zhi-ming, NIE Xiao-wa, GUO Xin-wen, SONG Chun-shan. Theoretical calculation study on the effect of nickel doping on the hydrogenation of CO2 to hydrocarbons over Fe catalysts[J]. J Mol Catal,2020,34(4):293−303.
    [27] 冯刚, 肖祈, 王大山, 周健, 卢章辉, 张荣斌. 第一性原理研究镍改性ZSM-12分子筛的酸性(英文)[J]. 燃料化学学报,2020,48(6):704−712. doi: 10.3969/j.issn.0253-2409.2020.06.009

    FENG Gang, XIAO Qi, WANG Da-shan, ZHOU Jian, LU Zhang-hu, ZHANG Rong-bin. Acid properties of Ni-modified ZSM-12: A first-principles study(English)[J]. J Fuel Chem Technol,2020,48(6):704−712. doi: 10.3969/j.issn.0253-2409.2020.06.009
    [28] JIA X, SUN K, WANG J, LIU C. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J Energy Chem,2020,50(11):409−415.
    [29] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phy Rev B,1992,46(11):6671−6687. doi: 10.1103/PhysRevB.46.6671
    [30] DOU M B, ZHANG M H, CHEN Y F, YU Y Z. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst[J]. Surf Sci,2018,672−673:7−12. doi: 10.1016/j.susc.2018.02.013
    [31] ZHANG M H, DOU M B, YU Y Z. DFT study of CO2 conversion on InZr3(110) surface[J]. Phys Chem Chem Phys,2017,19(42):28917−28927. doi: 10.1039/C7CP03859C
    [32] MAREZIO M. Refinement of the crystal structure of In2O3 at two wavelengths[J]. Acta Cryst,1966,20(6):723−728. doi: 10.1107/S0365110X66001749
    [33] 薛继龙, 方镭, 罗伟, 孟跃, 陈涛, 夏盛杰, 倪哲明. Cu-Pt-Au三元合金催化水煤气变换反应的密度泛函研究[J]. 燃料化学学报,2019,47(6):688−696. doi: 10.3969/j.issn.0253-2409.2019.06.006

    XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. J Fuel Chem Technol,2019,47(6):688−696. doi: 10.3969/j.issn.0253-2409.2019.06.006
    [34] 赵炳坤, 陈镇, 吴玉龙, 杨明德, 封伟. 甲氧基在Rh(111)表面吸附的密度泛函研究[J]. 燃料化学学报,2010,38(3):365−369. doi: 10.3969/j.issn.0253-2409.2010.03.019

    ZHAO Bing-kun, CHEN Zhen, WU Yu-long, YANG Ming-de, FENG Wei. A DFT study on the adsorption of methoxy on the Rh(111) surface[J]. J Fuel Chem Technol,2010,38(3):365−369. doi: 10.3969/j.issn.0253-2409.2010.03.019
    [35] 厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006

    LI Zhi-peng, NIN Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHEN Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006
    [36] HALGREN T A, LIPSCOMB W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem Phys Lett,1977,49(2):225−232. doi: 10.1016/0009-2614(77)80574-5
    [37] 郭秋婷. 二氧化碳加氢氧化铟催化剂实验研究[D]. 天津: 天津大学, 2015.

    GUO Qiu-ting. CO2 hydrogenation over In2O3[D]. Tianjin: Tianjin University, 2015.
    [38] LIU R Q. Adsorption and dissociation of H2O on Au(111) surface: A DFT study[J]. Comput Theor Chem,2013,1019:141−145. doi: 10.1016/j.comptc.2013.07.009
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  176
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-07-20
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回